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Series Foreword

Since 2001 it has been my privilege to be involved with the book Geographic
Information Systems and Science, published by John Wiley and Sons, Ltd. Through
its various editions, this book and associated materials has sought to present a state-
of-the-art overview of the principles, techniques, analysis methods and management
issues that come into play whenever the fundamental question ‘where?’ underpins
decision-making.

Together this material makes up the organising concepts of Geographic Informa-
tion Systems (GIS), which has a rich and varied history in environmental, social,
historical and physical sciences. We can think of GIS as the lingua franca that
builds upon the common purposes of different academic traditions, but with an
additional unique emphasis upon practical problem-solving. As such, much of the
core of GIS can be thought of as transcending traditional academic disciplinary
boundaries, as well as developing common approaches to problem solving amongst
practicing professionals.

Yet many of the distinctive characteristics, requirements and practices of different
applications domains also warrant specialised and detailed treatments. ‘Mastering
GIS’ seeks to develop and extend our core understanding of these more specialised
issues, in the quest to develop ever more successful applications. Its approach is to
develop detailed treatments of the requirements, data sources, analysis methods and
management issues that characterise many of the most significant GIS domains.

First and foremost, this series is dedicated to the needs of advanced students of
GIS and professionals seeking practical knowledge of niche applications. As such,
it is dedicated making GIS more efficient, effective and safe to use, and to render
GIS applications ever more sensitive to the geographic, institutional and societal
contexts in which it is applied.

Paul Longley, Series Editor
Professor of Geographic Information Science

University of London





Preface

‘Integration’ refers to the move towards a closer, perhaps symbiotic, relationship
between geographic information systems (GIS) and remote sensing and is seen by
many to be essential for the future development of both technologies. The main
drivers for this move have been the proliferation of geospatial data in various
formats, the pursuit of sophisticated statistical models, and the demand for more
elaborate applications. Moreover, proprietary systems are no longer solely devoted
to either GIS operations or image processing; all now handle data from both and
all now offer analytical functions that facilitate dual interoperable analyses.

Ever since the first formal research agendas on GIS and remote sensing inte-
gration were introduced, back in 1990, by the US National Center for Geographic
Information and Analysis (NCGIA Initiative I-12), hybrid systems have become
very much the rule rather than the exception. Although data from both GIS and
remote sensing are now routinely analysed by seamless interoperable amalgamated
systems, many users are unaware of the numerous technical and institutional issues
that need to be addressed when merging data that are derived from disparate sources
and essentially represent diametrically opposing conceptual views of reality. This
book explores the tremendous potential that lies along the interface between GIS
and remote sensing for activating seamless databases and instigating information
interchange. It concentrates on the rigorous and meticulous aspects of analytical
data matching and thematic compatibility – the true roots of all branches of GIS–
remote sensing applications. The first four chapters of the book confront technical
issues of integration, such as data fusion, scale effects and data uncertainty, as well
as introducing an integrated taxonomy of data structure and system-independent
functionality. The remaining chapters explore and demonstrate most of the salient
integration procedures and methodologies, using a number of applications, including
the measurement of urban morphologies, the estimation of urban sprawl and popu-
lation growth, urban vulnerability analysis, and the augmentation of environmental
change indicators. In all, emphasis is given to the close statistical and thematic
association of information from both technologies, and the merits of joint imple-
mentation of GIS and remote sensing.

This book is the result of an extensive research by experts working at the inter-
face of GIS and remote sensing and will appeal to students and professionals
dealing with not only GIS or remote sensing but also computer science, civil
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1
GIS and remote sensing
integration: in search of
a definition

Victor Mesev and Alexandra Walrath
Department of Geography, Florida State University, Tallahassee, FL, USA

Synergy – the bonus that is achieved when things work together
harmoniously – Mark Twain

Wisdom implies a mature integration of appropriate knowledge, a seasoned
ability to filter the inessential from the essential – Deborah Rozman

1.1 Introduction

Ever since its formalism by the NCGIA Initiative-12 in 1990 (Star et al., 1991),
the move towards ‘seamless’ and ‘hybrid’ integration of data, techniques and orga-
nization from the geographic information systems (GIS) domain with those from
the remote sensing2 sphere has been arduous, sporadic and irresolute. Few major
breakthroughs have materialized other than the establishment of routine data format
interchanges, improvements in the efficiency of interoperational relational database
systems (Abel et al., 1994) and modest advances in the accuracy of object/thematic

1 GIS is used both singularly and as a collective throughout this book. GIS is typically defined
as ‘a computer system for the collection, storage, manipulation, display and management of spatial
information’.
2 Remote sensing predominantly refers to the collection and manipulation of digital satellite imagery.

Integration of GIS and Remote Sensing Edited by Victor Mesev
© 2007 John Wiley & Sons, Ltd.



2 CH01 GIS–REMOTE SENSING INTEGRATION

identification cross-overs (Shi et al., 1999). More ambitious endeavours to create
truly integrated geographic information systems (IGIS), sometimes called ‘total’
integration, seem to have floundered on most of the initial conceptual, technical
and institutional obstacles identified by the NCGIA initiative (cf. Ehlers, 1989; Star
et al., 1990; Hinton, 1996; Wilkinson, 1996; Mesev, 1997). One could even say
that the search for more resolute solutions, such as those related to the object/field
dichotomy, analytical interoperability, the close monitoring of error propagation and
the compatibility of mutually beneficial research programmes, remains as elusive
today as it was in 1990. Admittedly, many proprietary geospatial systems are
capable of representing and querying data stored in an increasing number of formats
and resolutions, yet computational compatibility is rarely translated to full concep-
tual, thematic, scale and temporal compatibility. In other words, although technical
expediency has facilitated the handling of data from GIS and remote sensing, there
is no guarantee that any subsequent computational interaction necessarily results in
strong intuitive and theoretical mutual relationships. Total integration may not be a
question of whether GIS and remote sensing can be integrated, but more of whether
they should be integrated – and to answer that, some discussion is first required on
precisely what integration between GIS and remote sensing actually means.

1.2 In search of a definition

No one definition of integration between GIS and remote sensing exists. Instead,
integration has been used to refer indiscriminately to almost any type of connec-
tion, ranging from pragmatic computational amalgamation of data to the concep-
tual understanding of how geographic features are interrelated. Unsurprisingly, an
unbounded definition embraces a large and growing body of literature, anything
from research on tight, seamless databases, and robust statistical relationships (Zhou,
1989; Smits, 1999), to applications of variable implicitness and unpredictable levels
of information exchange (cf. de Brouwer et al., 1990; Janssen et al., 1990; Davis
et al., 1991; Chagarlamundi and Ganulf, 1993; Debinski et al., 1999; Driese et al.,
2001; Brivio et al., 2002). However, in the search for a narrower definition, any
book with the term ‘integration’, to all intents and purposes, presumes a strict
discussion on numerical calculations and complex computational algorithms, espe-
cially when the integration is referring to system-based technologies, such as GIS
and remote sensing. In this sense, integration may be defined as the establishment
of numerical consistency across disparate digital data models and the execution
of robust programming algorithms (Archibald, 1987; Brown and Fletcher, 1994;
Abel et al., 1994). In addition, emphasis is on computational schemata that ensure
either efficient dual operability across software platforms or, preferably, the creation
of a hybrid database capable of handling incongruent data at variable resolution,
complexity, quality and completeness (Zhou, 1989). Under this definition, the inte-
gration of data (the beginnings of data fusion) and algorithms may be numerically
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and operationally feasible, but it does not necessarily cover the blending of disparate
data and algorithms pertinent to information that is explicitly geographic in nature.
The jump from generic numerical data to geographic data represents more than
simply adding a locational dimension. Both the quality and usefulness of spatial
data that represent and model the complex real world are intrinsically constrained
by three basic cartographic rules: the scale of representation; the generalization of
feature delineation; and the semantic description of parcels of the Earth’s surface
and atmosphere. These three conditioning factors are further intensified by the
eternal pursuit for greater accuracy and higher precision when recording the exact
locational coordinates of geographic features.

Both GIS and remote sensing are technologies that focus exclusively on
geographic data and, as such, both are designed to represent the world’s geographic
features as reliably and realistically as possible and within the constraints of the
three cartographic rules. However, that is where the straightforward comparison
ends. Technically and conceptually, each technology3 is founded on diverging prin-
ciples, where remote sensing is predominantly a data collection technology, while
GIS is one that is principally dedicated to data handling. Remote sensing deals with
the more immediate access of primary data at a more continuous scale, collected
over extensive areas at rapid temporal frequencies. Digital remotely sensed data
records the magnitude of passive and active energy at multiple wavelengths as it
interacts with the earth’s surface and atmosphere. As such, remotely sensed pixels
are a multispectral radiometric vector that represents the continuous nature of the
biophysical and anthropogenic landscapes at various levels of spatial, spectral and
temporal resolution. The resultant raster image of individual pixels shows how the
landscapes would appear from an elevated viewpoint. However, the image does not
have an interrelated topology and the pixels are not implicitly related, other than by
their positional adjacency. The continuous representation of reality and the lack of
a coherent topology invariably limit the extent to which pure thematic information
can be extracted, and as such the accuracy of an image is highly unpredictable,
both spatially and thematically.

In comparison, data handled by GIS are commonly stored as vector models and
represent geographic features as more discrete entities within a structured topology
and defined by implicit relationships. As a result, discrete entities are delineated by
sharper, crisp boundaries and labelled with less ambiguous thematic descriptions.
However, much of the digital spatial data stored in a GIS are derived from external
sources, such as analogue maps, ground surveys, global positioning systems (GPS)
and, most importantly, remote sensing (Gao, 2002; Xue et al., 2002). Furthermore,
remote sensing, in the form of aerial photographs, is also the predominant resource

3 GIS and remote sensing are referred to as technologies in this book although the terms ‘field’ or
‘discipline’ (as incorporated by GIScience) are sometimes used by other sources to indicate broader
theoretical underpinnings.
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for producing many of the topographic compilations from which environmental
indicators, such as elevation, hydrology and land cover, are digitized into sharp
vector boundaries and entered into GIS (Dobson, 1993). More recently, satellite
remote sensors with high spatial resolutions of 4 m and finer are also providing
valuable input data into many GIS applications, especially for the much neglected
field of monitoring urban morphologies, urban pollution and urban growth (Mesev,
2003). The traditional role and reliance on remote sensing as input data for GIS
suggests that integration is not new and has existed as long as both technologies
(Marble, 1981; Piowowar et al., 1990; Wilkinson, 1996). The three time-honoured
ways in which GIS and remote sensing have been integrated are as follows:

• Remote sensing used to collect data for GIS databases. This includes the ability
to update and validate thematic coverages, using aerial photographs, earth obser-
vation satellite sensors, interferometric radar and LiDAR.

• GIS data used as ancillary information for image processing. Many techniques
exist, such as using vector lines to define boundaries between land covers,
providing locational attributes for geo-registration, and aiding classification by
selecting purer training samples, weighting discrimination functions and sorting
classified pixels (see Hutchinson, 1982; Foody, 1988; Mesev, 1998, 2001).

• Combined analytical functions. These include basic spatial queries, the overlay
of statistical and thematic attributes from both GIS and remote sensing, using
Boolean and fuzzy logic, and the building of multiple-view expert systems.

All three of these traditional means of integration were established well before the
NCGIA initiative of 1990. According to the initiative, the next step for greater assim-
ilation between GIS and remote sensing depended on greater computer processing
power (Faust et al., 1991), reduction in error propagation (Lunetta et al., 1991),
compatibility of data structures (Ehlers et al., 1991), and resolution of many non-
analytical institutional impediments, such as data availability, costs, standards and
organizational infrastructure (Lauer et al., 1991). Unfortunately, the volume of
subsequent research has not matched the same sense of importance and urgency
expressed by these and other calls to ensure tighter integration.

1.2.1 Evolutionary integration

For some, complete or total integration between GIS and remote sensing is the
ultimate goal. Ehlers et al.(1989) proposed three stages in the evolution of inte-
gration that focused on the degree of interaction between data models, the level of
data exchange, the pursuit of close geometric registration, the matching of carto-
graphic representation, a parallel user interface, and the compatibility of geographic
abstraction. The three stages of the evolution are as follows:
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• Stage 1 would focus on the separate but equal development of databases from
each technology. Data would be exchanged in predominantly vector format (for
GIS) and raster models (for remote sensing) but capable of being simultaneously
displayed by overlays. Analysis would be limited to the update of GIS coverages
by the positional comparison of thematic attributes generated from classified
remotely sensed images; or the use of GIS data for facilitating image geo-
registration.

• Stage 2 oversees the continuation of separate databases, but each technology
would share a user interface. Data from each technology would be converted to the
other through vectorization and rasterization, and the operational rationalization
of spatial and temporal attributes.

• Stage 3 represents the final level of complete or ‘total’ integration. Essentially,
GIS and remote sensing become one indistinguishable system, in which raster
and vector data models are handled interchangeably through data uniformity
across object-based (GIS data) and field-based (remotely sensed data) geographic
representation.

Total integration, although theoretically desirable, is not replicated pragmatically.
Instead, much research and applications involving the integration of GIS and remote
sensing seems to be adequately completed by stages 1 and 2.

1.2.2 Methodological integration

The three stages in the evolution of integration of data and computational analysis
between GIS and remote sensing also presuppose a methodological continuum;
generally from loose data coupling to indistinguishable models of representation.
However, the continuum is unstructured and integration issues are sporadic and
unfocused. Mesev (1997) outlined a logical and structured, yet flexible, frame-
work or schema for the formalization of methodological factors and issues for
consideration when tackling integration between GIS and remote sensing. The
reasons for designing a formal schema were primarily to define all conceivable
steps within a structure that defines data accumulation, processing, and decisions
in a general chronological order, and also to promote awareness and stimulate
discussion of the many pitfalls surrounding the delicate interface between GIS
and remote sensing. Organized into a series of hierarchical levels, the top-down
approach of the schema ensures that all methodological issues are addressed at
increasing detail. Level 1 contains the broadest set and includes data unity, measure-
ment conformity, positional integrity, statistical relationships, and classification
compatibility – as well as integration design with reference to many non-analytical
and external factors such as feasibility and cost–benefit studies. At level 2, links
between the six level 1 components become more complex, and by level 3 they
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Level II Level III

Data unity (factors that bring together GIS and remotely sensed data)
Information interchange Definition of integration, type of information,

information harmony (spatial units and attributes)

Data availability Awareness, publicity, search, data type, age, quality,
(access or create)

Data accessibility Cost, agreements, exchanges, sharing, proprietary,
resistance, confidentiality, liability

Data creation Digitising, scanning, survey information encoding,
sampling, data transformation, GPS

Measurement conformity (factors that link GIS and remotely sensed data)
Data representation Data structures (vector, raster), data type, level of

measurement, field-based vs. object-based modelling,
interpolation

Database design Type (relational, hybrid), schema, data dictionary,
implementation (query, testing)

Data transfer Format, standards, precision, accuracy

Positional integrity (factors that spatially coordinate GIS and remotely sensed
data)
Generalization and scale Spatial resolution, scale, data reduction and

aggregation, scale invariance

Geometric transformation Rectification, registration, resampling, coordinate
system, projection, error evaluation

Statistical relationships (factors that measure links between GIS and remote
sensing)
Vertical Boolean overlays, fuzzy overlays, dasymetric

mapping, areal interpolation, linear and non-linear
equations, time series, change detection

Lateral Spatial searches, proximity analysis, textural
properties

Classification compatibility (factors that harmonize information between GIS
and remote sensing)
Semantics Classification schemata, levels, descriptions, class

merging, standardization
Classification Stage (pre-, during, post-), level (pixel, sub-pixel) type

(per-pixel, textural, contextual, neural nets, fuzzy
sets), change detection, accuracy assessment

Figure 1.1 Level 3 integration issues
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Integration design
Objectives Plan of integration, cost/benefit assessment,

feasibility, alternatives to integration
Integration specifications User requirements (intended use, level of training,

education), system requirements (hardware, software,
computing efficiency)

Decision making Testing, visualization, ability to replicate integration,
decision-support, implementation or advocate
alternatives, bidirectional updating and feedback into
individual G IS and remote sensing projects

Figure 1.1 (Continued)

increase substantially in number and detail. The relationship between the three levels
is a standard hierarchically nested structure; this is where a level 1 component,
such as data unity, is divided into a series of level 2 factors, such as information
interchange and data availability; and where a level 2 factor such as data avail-
ability is divided into level 3 items, such as awareness, publicity, quality, age, etc.
(Figure 1.1).

Mesev (1997) only outlines the first three levels (Figure 1.1), but there is no
reason why further more refined levels cannot be added. Where schemata have
already been documented, for example by Marble (1981) and Davis et al.(1991),
links between GIS and remote sensing have not been formalized or itemized, and
relationships are only presumed. The schema by Mesev (1997) attempts to define
the commonest links within a logical structure, and also aims to address direct
data coupling, including parallel data acquisition, and analytical operations, with
frequent feedback loops and joint decision-making scenarios.

Total integration may be the ultimate goal, yet GIS and remote sensing software
have largely retained their independence, even when all technical and method-
ological issues are sufficiently taken into consideration. For example, there is a
conspicuous dearth of literature on total integration in the years since the estab-
lishment of the 1990 NCGIA initative. Instead, most studies have tended to focus
on the utilization and matching of scale-appropriate thematic information, regard-
less of source and format (Quattrochi and Goodchild, 1997). Applications spanning
both the biophysical and built environments have been facilitated by the expansion
in the range of geospatial data, most notably from GPS receivers, and the new
breed of remote sensors, such as interferometric synthetic aperture radar (SAR),
light detection and ranging (LiDAR), and more recent remote sensors, such as
the moderate resolution imaging spectroradiometer (MODIS), the advanced space-
borne thermal emission and reflection radiometer (ASTER), IKONOS and Quick-
bird.
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1.3 Outline of the book

Research and applications throughout this book outline and demonstrate how using
data and processing from GIS and remote sensing produces benefits that frequently
exceed those from using each technology singularly. Benefits are measured not
simply in terms of higher accuracy and greater precision in output, but also on types
and levels of information that are otherwise either unavailable or of an inferior
quality in one or the other technology.

However, the diverse applications in this book face several common challenges.
First, integration can lead to problems of accuracy, uncertainty and scale, which,
while affecting any GIS analysis, are often compounded by the integration with
remotely sensed data. Chapters 2, 3 and 4 focus almost exclusively on outlining
practical solutions for dealing with some of these technical pitfalls. A second major
area of concern is the current level of disorganization within GIS and remote
sensing technologies. Without a standard method of classifying different operations
and data types, it is difficult to develop widely applicable methods of integration.
Lack of communication marks a third major obstacle to integration. Chapter 7 notes
the need for communication between the remote sensing community and social
sciences, while Chapter 9 advocates an exchange of ideas between GIS, remote
sensing and the fields of hazard analysis and disaster mitigation. Chapters 6, 8
and 11 showcase the ways in which integration can assist people working in many
professions, including urban planning and environmental management. Commu-
nication between the academic and professional communities will be an essential
factor in the success of integration. Lastly, many of the authors to this book describe
their research as a first step towards further integration. They propose better organi-
zational frameworks, more sophisticated applications, and innovative strategies for
future interdisciplinary collaboration. Although GIS has long been used to integrate
data from various sources, the integration of GIS and remote sensing opens the
door to a new world of possibilities.

Chapter 1 attempts to define and conceptualize the rationale, motivation, and expedi-
ency behind the integration of data and techniques from the technology of GIS with
data and techniques from the technology of remote sensing. It examines whether
there is enough scope for overlap and communication and how both technologies
have developed concurrently over recent times.

Chapter 2 reiterates the conceptual divisions between GIS and remote sensing and
warns of continued ad hoc integration if the data integration approach is not replaced
by an analysis integration approach based on a taxonomy of system-independent
analysis functions. Most existing GIS taxonomies are based on the underlying
system and its specific data structure, while various remote sensing systems offer
their own unique classification systems. In response, Ehlers proposes an integrated
taxonomy based on universal GIS operators and a variety of image processing
functions. While somewhat limited, this approach can nevertheless serve as a



1.3 OUTLINE OF THE BOOK 9

basis for future progress towards a single, widely applicable, integrated taxonomy
for GIS and remote sensing. Another obstacle to total integration is the issue of
how to deal with uncertainty. All GIS and remotely sensed data include some
level of inaccuracy, but the problem of inaccuracy is compounded when data are
transformed from one model of geographic space to another. Ehlers focuses on
positional and thematic error, which he identifies as the ‘dominant error sources in
the integration of GIS and remote sensing’. To support this, an example of a typical
GIS/remote sensing analysis (an inventory of land cover over an administrative area)
is used to explore positional and thematic uncertainties, along with discussions on
line and point errors, confidence regions for line segments, positional uncertainty of
boundaries and area objects, and thematic uncertainties of classified remote sensing
images. All of these are combined within the ‘S-band’ model, revealed as a first
step towards a more comprehensive model of uncertainty.

Chapter 3 focuses on data fusion, an area of research increasingly prevalent
since the inception of ‘telegeoprocessing’, a term referring to the interaction of
GIS, distributed computing systems, telecommunications, GPS, etc. Two of the
simplest methods of data fusion, already widely used, are remote sensing output
to GIS (e.g. the conversion of a remotely sensed image to a GIS layer) and GIS
input to remote sensing interpretation algorithms (e.g. the application of GIS data
to remotely sensed images). Simple data fusion is currently being used successfully
in commercial urban planning products. However, several fundamental problems
must be overcome before more sophisticated techniques become prevalent; for
example, the establishment of common standards, the use of compatible legends and
scales, and the measurement of the degrees of accuracy. Data fusion, the authors
assert, is not possible without first being able to compare data and select the most
useful for a given project. Gamba and Dell’Acqua note that it is less important
to combine original data than it is to derive useful, comparable information from
various sources. By extracting comparable information from different sources, it
is possible to view a single type of information from multiple perspectives. The
authors provide a round-up of recent approaches to data fusion, such as multi-
scale analysis, fuzzy logic and non-parametric and knowledge-based techniques,
weighing the pros and cons of each. They then propose a method of integrating
GIS and remote sensing into a change detection module, specifically to be used to
extract features from a remotely sensed image, analyse change in an existing GIS
layer, or detect change using both classification and feature extraction.

Chapter 4 centres on the problems that can occur when integrating data from
GIS and remote sensing at different scales, using the ‘sampling frame’ and the
concept of ‘support’. The sampling framework, defined as the set of all parameters
that determine how data are acquired on a property of interest, affects the scale of
spatial variation, present in both raster and vector models; while the support – a
term derived from geostatistics and encapsulating the size, geometry and orientation
of the space over which an observation is defined – can be thought of as a ‘primary
scale of measurement’. For instance, variograms and fractal geometry are frequently
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used to assess the scales of spatial variation in the vector data model, and statistics
such as Moran’s I and Geary’s C can measure spatial autocorrelation – upscaling
and downscaling in these allows the size of the support to be altered. Processes can
be modelled using spatially distributed dynamic models at appropriate scales; useful
when attempting to understand a process better or predict its future behaviour.
Atkinson goes on to concentrate on two main types of integration, GIS overlay
and remote sensing classification. When combining GIS and remotely sensed data
of different scales, degrading the data at finer resolution to match those of the
coarser resolution is not always the best choice. It is particularly important to
realize that the transformations of data from one form to another impose their
own scales. Interpolation techniques, such as IDW and kriging, can be used to
transform vector data to raster data, but the smoothing effects of interpolation can
produce unwanted consequences. In a discussion of remote sensing land cover
classification methods, Atkinson draws attention to problems associated with pixel-
based classification, highlighting several advantages of per-parcel classification,
soft classification, subpixel allocation and super-resolution mapping. The success
of these techniques depends on the scales of measurement, underlying scales of
variation, and accurate geometric registration between vector and raster datasets.

Chapter 5 introduces the use of spatial metrics and geostatistics in urban analysis
across GIS and remotely sensed data, using techniques such as image interpolation,
uncertainty mapping and identification of spatial variability in urban structures. The
focus is on land cover and land use, the quintessential dichotomy between biophys-
ical assemblages and anthropogenic exploitation, respectively. Liu and Herold illus-
trate three empirical studies linking the dichotomy with geostatistics and spatial
metrics; the first, classifying images using geostatistics before interpreting the
second-order data with spatial metrics; the second, exploring the correlation between
population density and urban form; and lastly, reverting to geographically weighted
regression to connect urban form and urban growth factors. Overall, these three case
studies demonstrate that geostatistics and spatial metrics bring their own strengths
and weaknesses to urban analysis.

Chapter 6 illustrates the ways in which GIS and remote sensing can be inte-
grated to reveal spatial characteristics of urban sprawl at the building-unit level.
Historically, sprawl research has focused on either demographic-based or phys-
ical landscape-based analysis, but concurrent implementation of GIS and remote
sensing allows these two branches of investigation to merge. Hasse offers a review
of sprawl in the GIS and remote sensing literature, including the variable defi-
nitions of sprawl, the concept of smart growth and the analysis of sprawl at the
metropolitan and submetropolitan levels. The discussion progresses from simple
types of integration (such as land use mapping based on remotely sensed images)
to more complicated forms of integration (such as land cover datasets that employ
‘land resource impact’ indicators). Although geospatial technologies tend to be
underused by urban planners and policy makers, Hasse sees great potential for
sprawl measurements at the building-unit level, using models that replicate the
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nested hierarchical structure of urban areas (and may even avoid some of the scale
problems mentioned in Chapter 4). The author outlines five geospatial indices of
urban sprawl (GIUS) that provide measurements of various forms of sprawl. The
five indices are urban density (the amount of land occupied by a housing unit), leap
frog (the distance of new housing units to existing housing units), segregated land
use (a measurement of land used for similar purposes), highway strip (the amount
of land used for strip malls, fast-food restaurants and housing units lining rural
highways) and community node inaccessibility (the distance of new housing units
to the nearest community centres). The creation of an integrated database could
facilitate increasingly sophisticated analyses of building-level urban sprawl.

Chapter 7 reviews a variety of remote sensing applications for urban analysis,
but particular emphasis is placed on the estimation of socio-economic information
(from remotely sensed images) and the modelling of socio-economic activity (by
linking remotely sensed images with GIS data). Various types of socio-economic
information can be estimated from remotely sensed images, including population
density, employment, gross domestic product and electrical power consumption;
and the use of remote sensing allows governments to estimate population in areas
where censuses are out of date or unreliable. Population density can be estimated
based on types of land use, employment from surface temperature, and GDP and
power consumption from nighttime imagery. Furthermore, techniques for population
interpolation meld existing population data with additional remote sensing data to
create more accurate estimates. Socio-economic indices (e.g. a housing index or
quality index) can be created by integrating GIS data with remote sensing data.
Wu concludes with a discussion of the advantages and disadvantages of applying
remote sensing to urban analysis. Advantages include the frequency with which
remotely sensed data can be updated, whilst disadvantages include the lack of
dialogue between remote sensing researchers and more traditional social scientists.

Chapter 8 examines the integration of remote sensing, GIS and spatial modelling
for sustainable urban planning. It describes historic patterns of urban growth on
the outskirts of Atlanta, Georgia, USA, and predicts potential patterns of future
development. Using a series of Landsat images of the study area dating from 1973–
1999, Yang performs change detection analysis to assess Atlanta’s urban expansion,
and spatial statistical analysis to identify the forces driving the city’s growth. Central
to the analyses is the integration of biophysical and socio-economic data at three
scales: city, county and census tract. Dynamic spatial modelling is then performed
using the SLEUTH urban growth model, with inputs that include remotely sensed
and GIS data, such as urban land use, terrain conditions, socio-economic variables
and location measures. As a result, the author models two potential scenarios for
future urban growth; the first predicts the pattern of urban growth that will occur if
current planning strategies remain unchanged and urban sprawl continues unabated,
whilst the second scenario predicts the pattern of urban growth that will occur if
Atlanta adopts some strategies for ‘smart growth’ and environmental conservation.
This second scenario is favoured because it predicts approximately 50% of the
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growth that would occur from the first scenario. If geospatial information technology
is to be used successfully in sustainable urban planning, Yang asserts that integration
is not only desirable, but essential.

Chapter 9 introduces an integrative model for conducting vulnerability analyses –
tested on a case study in Los Angeles, California, but remaining portable enough to
apply the unique environmental risks and socio-economic context of their study to
other places. The authors outline a scenario in which this relationship between the
general and the particular is visualized as a hierarchy of nested ‘socio-ecological
systems’. Specifically, the model integrates GIS and remote sensing data to predict
the effects of hypothetical disasters and to highlight locations that are especially at
risk. In their case study, susceptible places or ‘hot-spots’ are identified by a model
of urban vulnerability to earthquakes, built on GIS data representing population,
building size and geological conditions, as well as remotely sensed imagery used
to measure the physical characteristics of the predicted hot-spots. A multiple end-
member spectral mixture analysis is used in conjunction with landscape metrics to
summarize spatial variation, while census data are used to create an index of wealth
for Los Angeles, an index which demonstrates an expected negative correlation
between wealth and vulnerability. When constructing their model, Rashed et al.
borrow techniques from the fields of hazard analysis and disaster management.
They argue that future research on GIS and remote sensing integration should be
extended beyond the present focus on technological and methodological issues, to
include the subject matter and allow its theoretical underlying dynamics to inform
the direction of integration.

The last two chapters evaluate the current state of research on environmental
applications completed by the mutual interaction of data from GIS and remote
sensing. Miller and Rogan in Chapter 10 focus on biodiversity and ecological
representation and analysis, with particular emphasis on species distribution models
(SDM) and change detection. In the past, the trend in ecological studies has been to
use GIS and remote sensing separately, where GIS functions assist in the calculation
of variables pertaining to climate, topography and environmental gradients, while
remote sensing contributes information on spectral vegetation indices, structural
configuration and land cover classification and change detection. The authors outline
how these separate ecological indicators and techniques may be combined within
SDM to produce habitat suitability maps, and how levels of biodiversity can be
predicted from multiple suitability maps. An early example is the USGS’s Gap
Analysis Programme, which combines GIS and remotely sensed data to identify
potential problems related to biodiversity and species conservation. A more detailed
case study by the authors demonstrates an innovative integrative methodology
designed to combine five GIS layers (slope, elevation, aspect, vegetation type,
and previous fire) with six spectral variables (Kauth Thomas). The methodology
harnesses the logic of a hierarchical classification tree with the descriptive and
predictive capabilities of generalized linear and generalized additive models to map
land cover change in San Diego County, California. However, the reliability and
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effectiveness of such multivariate predictor models of species distribution can be
improved by research that focuses on the extraction of more continuous spectra-
based input data, at variable spatial and temporal scales, within more flexible
statistical models.

The environmental theme is continued by the last chapter, Chapter 11 by Shine
and Mesev, which centres on the spatial and temporal role of GIS and remote
sensing data for monitoring arid-zone ephemeral wetlands. A longitudinal case study
from Mauritania in the Sahel region demonstrates how aerial photography, digital
topographic maps, GPS readings and satellite sensor data, in combination, can
provide valuable information on the location, size, shape and duration of transitional
water bodies. The study is in response to the dearth of consistent digital geospatial
information on the extent and quality of natural resources in developing countries –
and as such modernized databases built on data from GIS and remote sensing are a
vital prerequisite for the evolution of sound environmental management policies. In
the Mauritania case study, remotely sensed data collected from the 1950s–1980s are
used to compare the changes in size of several ephemeral wetlands, along with more
detailed information on wetland characteristics from GPS surveys collected during
field visits. The authors herald this integrative monitoring strategy as a model of
a methodology that can not only help develop sustainable environmental policies
in areas affected by ephemeral wetlands but also be applied to many other natural
resources in the developing world.

1.4 Conclusions

Total integration has not yet materialized. With the volume of data available and
the ease of exchange through the Internet, perhaps the road to full integration is less
a computational bottleneck and more a conceptual disparity. As alluded to earlier,
and as will be discussed throughout this book, remote sensing is chiefly designed to
collect energy-derived geographic information, while GIS is predominantly a data-
handling technology capable of comparing, evaluating, modelling and simulating
geographic patterns. Conceptually, this difference is almost unsurmountable, and
in any case why seek to completely fuse the two technologies into a single system
when they seem to function quite satisfactorily side-by-side? If anything, the notion
of total integration should refer to attaining a high level of complementary exchange
of information and sharing of data processing, rather than some idealized and
ultimately unattainable pursuit for homogeneity of data and the relentless strive for
identical algorithms.

Another conceptual divergence and major obstacle to integration is how
geographic information is represented. Remote sensors record continuous data
representing the interaction of energy with the earth, while GIS is predominantly
concerned with much more defined and discrete boundaries between geographic
features. These two ‘views’ of reality are conflicting and difficult to operationalize
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within a single model or system. But these views can be also complementary; they
allow the more recent data collected by remote sensors to update and embellish
GIS layers, and they allow GIS data to geo-register and help extract information
from remotely sensed imagery. Besides, this ‘complementary’ view is respectful of
the fact that most GIS data are derived from remote sensing anyway.

Finally, one further reason for the absence of total integration is expediency.
The way many applications ‘combine’ data from GIS and remote sensing can only
best be described as ad hoc – not logically and painstakingly within some struc-
tured guidelines. Integration to many researchers dealing with geospatial data is any
process that facilitates the fulfilment of their objectives, regardless of the level of
assimilation. So perhaps the definition of integration should remain ambiguous and
researchers should instead highlight the strengths of the two individual technolo-
gies, rather than strive to attain the redundant and inefficacious goal of absolute
amalgamation.
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2
Integration taxonomy and
uncertainty

Manfred Ehlers
Forschungszentrum für Geoinformatik (FZG) und Fernerkundung, Universität Hochschule Vechta, Germany

2.1 Introduction

Geographic information systems are increasingly seen as an integral part of the
modern information and communication society. Improved methods for data access
and integration have accelerated this process and scientific advances have paved
the way for GIS to be a catalyst for a new evolving discipline of geo-informatics.
One of the problems of applying geospatial technology has been the currency,
quality, accessibility and completeness of geo-information (GI). Remotely sensed
image data, especially from satellites, can be used to generate current, accurate
and synoptic information about all parts of the earth as a basis for geoscientific
analyses in GIS. Consequently, almost all major GIS software packages now offer
at least the possibility to display and query digital images as part of their GIS
database. With the advent of the new satellites of 1 m spatial resolution or even
better, we will see another push for the integration of remote sensing images
into GIS.

The advantages of the integration of GIS and remote sensing have been demon-
strated in a large number of application-orientated projects (see e.g. Star et al.,
1997). Unfortunately, the merging of remote sensing (and its associated image
analysis) and GIS has often resulted in the creation of just another ‘dumb’ GIS
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Figure 2.1 Concept for automatic extraction of GIS objects from remote sensing imagery

layer with pictorial information. Integration is restricted to mere georeferencing
and image overlay. A complete analysis from a remotely sensed image to a geo-
object can be performed only by manual interpretation. GIS and remote sensing
information is usually processed separately. The ideal goal should be that GIS
objects can be extracted from a remote sensing image to update the GIS database.
In return, GIS ‘intelligence’ (e.g. object and analysis models) should be used to
automate this object extraction process (see Figure 2.1). Nevertheless, the current
status can still be described primarily as data exchange between a GIS and an
image analysis system or an add-on of some image processing functionality to a
separate GIS.

Ehlers et al., as early as 1989, presented a concept for a totally integrated system
for remote sensing and GIS. They differentiated between three integration levels:
(a) two separate systems with a data interface; (b) two principally separate systems
with a common user interface; and (c) a totally integrated system (Ehlers et al.,
1989). Most of today’s GISs offer hybrid processing, i.e. the analysis of raster
and vector data. They also have image display capabilities or image analysis add-
ons that offer some level (b) functionality (Bill, 1999; Ehlers, 2000). However,
geospatial information is usually processed in either raster or vector form and has
to be converted into the desired processing or output format. A truly integrated
processing option (without prior conversion) does not exist. This is also valid for
integrated remote sensing–GIS analyses. The requirements for totally integrated
systems are usually defined on an ad hoc basis that is driven by project demands
or the data sources to be incorporated (Ehlers et al., 1994; Johnston et al., 1997).
What is needed is an analysis of the necessary processing components of such an
integrated system. The data integration approach has to be replaced by an analysis
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integration approach. This implies that we need a taxonomy of system-independent
analysis functions.

2.2 Taxonomy issues

2.2.1 Taxonomy of GIS operators

If one looks into the functionality of current GIS, it is immediately evident that
GIS operations are usually based on the underlying system and its associated data
structure. A general description of GIS functions could offer a system-independent
view. They are, however, predominantly concerned with low-level functions (see
e.g. Laurini and Thompson, 1992; Worboys, 2004). A GIS user, on the other hand,
wants to perform a spatial analysis or a comparison of two possible locations for
a specific development. He/she is normally faced with a system that offers a huge
number of functions that depend upon system and data structures and has to be
put together in a specified order to perform the desired analysis. A taxonomy of
universal high-level GIS operations that are independent of the system and the data
structure is still lacking.

A notable exception is the cartographic modelling (map algebra) approach of
Tomlin (1990). However, it is still restricted to raster-based systems. Tomlin struc-
tures his cartographic modelling functions into four classes with about 40 subfunc-
tions. These functions are sufficient to perform almost every possible high-level
GIS analysis. The strength of his approach is the mathematical rigidity that is
incorporated into a computer programming-type GIS language. Structuring the map
algebra commands in a procedure allows the composition of very complex GIS
analyses. The basic function classes of Tomlin’s map algebra are:

• Local functions, e.g. point operations, overlay, recoding.

• Focal functions, e.g. neighbourhood operations, buffering, distance calculation.

• Zonal functions, e.g. attribute operations, intersections.

• Incremental functions, e.g. nearest-neighbour, connectivity, slope, aspect.

Although these functions are system-independent and form the basis of many raster
GIS packages in current GIS software, they are still data structure-dependent, i.e.
designed for raster GIS. A step further towards a universal GIS language is the
approach of Albrecht (1996). Twenty data structure and system-independent high-
level GIS functions are grouped into six classes (Table 2.1). The user communicates
with the system through a flowchart tool similar to that used in modern GIS and
image analysis packages. The difference is that the GIS functions are independent
of the underlying system.
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Table 2.1 Universal high level GIS operators

Function group (Sub)functions

Search Thematic search Spatial search Interpolation (Re)classification
Location analysis Buffer Corridor Overlay Thiessen/Voronoi
Terrain analysis Slope/aspect Catchment/basins Drainage/

network
Viewshed
analysis

Distribution/
neighbourhood

Cost/diffusion/
spread

Proximity Nearest
neighbour

Spatial analysis Pattern/
dispersion

Centrality/
connectivity

Shape Multivariate
analysis

Measurements Distance Area

Modified after Albrecht (1996).

2.2.2 Taxonomy of image analysis operators in remote sensing

Digital image processing started in the early 1970s and is viewed as a young but
established discipline. It was influenced by its one-dimensional counterpart, signal
processing, by photography and optics, and by the scientific and technological devel-
opments in electrical engineering and computer science. Again, its interdisciplinary
heritage is clearly visible in the very different descriptions of image processing
functionality that can be seen in standard textbooks, such as Pratt (1992) or Sonka
et al. (1993).

Even in a well-defined application area such as remote sensing, we experience
very diverse approaches toward image analysis taxonomies. It is evident that the
authors do not want to present a systematic taxonomy of image analysis functions.
Nevertheless, textbooks mix hardware, sensors, systems and operations or present
structures that are inconsistent with a rational image processing taxonomy (Ehlers,
2000). This inconsistency when dealing with image analysis taxonomies is an
impediment for the development of a stronger theoretical background for the design
and implementation of integrated GIS. Without such a theoretical basis, the only
way to GIS–remote sensing integration seems to be a project-driven ad hoc approach
with limited usefulness and applicability.

2.2.3 An integrated taxonomy

To set up a taxonomy of data structure and system-independent GIS–image analysis
functions, one has to start from either the remote sensing or the GIS side. The
20 universal operators from Table 2.1 currently represent the only taxonomy that
meets the requirements stated above. Although the grouping can be debated (are
‘buffer’ and ‘corridor’ really different functions, or does ‘interpolation’ belong to
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Table 2.2 Universal image processing functions for integrated GIS

Function group (Sub)functions

Preprocessing Parametric
radiometric
sensor
correction

Parametric
geometric sensor
correction

Geometric
registration

Deterministic
techniques

Statistical
techniques
(interpolation)

Automated
techniques
(matching)

Error assessment

3D image
analysis

Ortho-image
generation

DEM extraction

Atmospheric
correction

Deterministic
approaches

Histogram-based
manipulations
(point
operations)

Filtering Image
enhancement

Feature/object
extraction

Unsupervised
techniques

Supervised
techniques

Model-
based
techniques

Error assessment

After Ehlers (2000).

the ‘search’ or to the ‘spatial analysis’ group?), the operators can be used as starting
points for an iterative approach. Based on typical remote sensing analyses, four
groups with 17 image-processing functions were selected to be added to the 20
universal GIS operators (Table 2.2). The derivation of these functions is a first
step and is based on an in-depth analysis of remote sensing literature and intensive
project experiences (Richards and Jia, 1999; Ehlers and Schiewe, 1999; Ehlers,
2000; Schiewe and Ehlers, 2003; Jensen, 2005).

It has to be noted, however, that the operators presented in Tables 2.1 and 2.2
are not sufficient to define and describe the complete functionality of integrated
GIS. Still required is a thorough analysis of hybrid processing capabilities, i.e. func-
tions that allow a joint analysis of remote sensing and GIS information. Still to be
investigated how polymorphic techniques can be used to extend the capacities of
the universal high-level GIS/image processing functions. The operator ‘overlay’,
for example, should be able to process image–image, GIS–image and GIS–GIS
overlays without a different name for every function option. First results of such
polymorphisms were investigated, for example, by Jung (2004). Additional func-
tions have to be developed that extend the capabilities of integrated GIS beyond
the sum of the single components. Three-dimensional (3D) urban information
systems created from GIS and remote sensing can be seen as an example of these
extensions.
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2.3 Uncertainty issues

2.3.1 Uncertainty in geographic information

The advantages of an integrated geoprocessing framework have been confirmed
by many examples, yet it is also evident that the issue of accuracy and errors
within this integration process has to be addressed. Good science requires state-
ments of accuracy by which the reliability of results can be understood and
communicated. When accuracy is known objectively, it can be expressed as
error; when it is not the term ‘uncertainty’ applies (Hunter and Goodchild,
1993). Thus, uncertainty covers a broader range of doubt or inconsistency and,
in the context of this chapter, includes error as a component. The under-
standing of uncertainty as it exists in geographic data remains a problem that is
only partly solved (see e.g. Story and Congleton, 1986; Goodchild and Gopal,
1989; Veregin, 1995; Ruiz, 1997; Worboys, 1998; Gahegan and Ehlers, 2000;
Zhang and Goodchild, 2002). Without quantification, the reliability of any results
produced remains problematic to assess and difficult to communicate to the
user. GISs provide a whole series of tools with which data can be manipu-
lated without offering any control over misuse. To that instance, Openshaw et al.
(1991) state:

A GIS gives the user complete freedom to combine, overlay and analyse data from
many different sources, regardless of scale, accuracy, resolution and quality of the
original map documents and without any regard for the accuracy characteristics of the
data themselves.

This is a serious issue; without quantification of uncertainty, the results them-
selves may only be considered as qualitative information, and this greatly
devalues their merit in both a scientific and a practical sense. To compound the
problem, in the fusion of activities from remote sensing and GIS, an integrated
approach to managing geographic information is required. This must necessarily
support many different types of data (Ehlers et al., 1991), gathered according
to different models of geographic space (Goodchild, 1998), each possessing
different types of inherent errors and uncertainties (Chrisman, 1991). As well
as providing individual support for these different models of space, it is neces-
sary to explicitly include methods that keep track of uncertainty as data are
changed from low-level forms (such as remotely sensed image data) to the higher-
level abstractions required by digital cartography and GIS (such as objects and
themes).

Whether a particular dataset can be considered suitable for a given task depends
on many different criteria and, despite the fact that various aspects of uncertainty
can be measured objectively, their importance will be largely determined by the
task. The overall goal when modelling uncertainty is therefore threefold: (a) to
produce a statement of uncertainty to be associated with each dataset, so that
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an objective statement of reliability may be reported; (b) to develop methods
to propagate uncertainty as the data are processed and transformed; and (c) to
ultimately determine the suitability of a dataset for a given task (‘fitness for use’).
Another goal is to communicate uncertainty information to the user (e.g. Hunter
and Goodchild, 1996).

A useful framework for handling uncertainty, recognizing the separate error
components of value, space, time, consistency and completeness, was proposed as
early as 1978 by Sinton and later embellished by Chrisman (1991). Uncertainty in
geographic data can be described in a variety of alternative ways; such as those
provided by Bédard (1987), Miller et al. (1989) and Veregin (1989). Although
different, these approaches all have a number of aspects in common, including
the observation that uncertainty itself occurs at different levels of abstraction. For
example, positional and temporal error describe uncertainty in a metric sense within
a spatiotemporal framework, whereas completeness and consistency represent more
abstract concepts describing coverage and reliability, and are consequently more
problematic to describe.

Uncertainty in its many forms has been on the research agenda of the GIS and
remote sensing community for at least two decades, gaining much of its early
momentum from the very first research initiative of the US National Centre for
Geographic Information and Analysis (NCGIA; Goodchild and Gopal, 1989). Work
to date on uncertainty addresses the inherent errors present within specific types
of data structures (e.g. raster or vector) or data models (e.g. field or object).
The effects of error propagation and analysis within these various paradigms
have been studied by Veregin (1989, 1995), Openshaw et al. (1991), Good-
child et al. (1992), Heuvelink and Burrough (1993), Ehlers and Shi (1997),
Leung and Yan (1998), Shi (1998), Arbia et al. (1999), Zhang and Kirby (2000),
Zhang and Stuart (2001) and Shi et al. (2003). In a recent compendium on
uncertainty in geographic information, Zhang and Goodchild (2002) investigated
methods for uncertainty assessment for continuous variables (fields), categor-
ical variables (classes) and objects. Despite the progress made to date, they
concluded that:

� � � academics, technologists, government information agencies, the general public
and the commercial sector must work together to take advantage of the benefits of
geographical information in new applications, while being fully informed of the nature
and implications of the associated uncertainties. Scientists and workers lead the leap
forward.

This does not sound like a problem solved.

2.3.2 Uncertainty in the integration of GIS and remote sensing

Even if we restrict uncertainty description to one specific problem, the integration
of remote sensing and GIS, a generally applicable solution does not exist. In
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1990, the error analysis research group of the NCGIA Initiative 12 (integration of
remote sensing and GIS) identified the research on uncertainty as one of the major
challenges in the integration of these two technologies (Lunetta et al., 1991). Remote
sensing scientists have always had the need to quantify errors that were associated
with the processing of remotely sensed data. Most efforts have gone into the error
analysis of rectification and registration processes and of information extraction or
multispectral classification techniques (see e.g. Ehlers, 1997; Gongalton and Green,
1999)

The problem of modelling uncertainty as the data are transformed through
different models of geographic space was addressed by Lunetta et al. (1991),
Gahegan (1996), and Gahegan and Ehlers (2000). A typical path taken by data
captured by satellite, then abstracted into a suitable form for GIS, is shown in
Figure 2.2, and involves four models. Continuously varying fields are quantified
by the remote sensing device into image form, then classified and finally trans-
formed into discrete mapping objects. The overall object extraction process is
sometimes referred to as ‘semantic abstraction’ (Waterfeld and Schek, 1992), due
to the increasing semantic content of the data as it is manipulated into forms that
are easier for people to work with.

When transforming data between different conceptual models of geographic
space, the uncertainty characteristics in the data may change, in that techniques
used to transform the data also alter the inherent uncertainty. In addition, these
techniques may introduce further uncertainties of their own. Furthermore, many
of the abstraction techniques employ combined data with different uncertainty
characteristics. Consequently, two interrelated problems must be addressed:

• How do the uncertainty characteristics of data change as data are transformed
between models?

• How do the transformation methods used affect and combine the uncertainty
present in the data?

One of the consequences of the traditional separation of GIS and remote sensing
activities into distinct communities and separate software environments is that there
is an artificial barrier between the two disciplines. Therefore, the integration of these

Image
DataField Data Thematic

Coverage
Geographic

Objects

Image capture Image classification Object formation

Figure 2.2 Continuum of abstraction from field model to object model. After Gahegan and
Ehlers (2000)
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two branches of science is to some extent an artificial problem. As a result, there
is no easy flow of metadata between systems. Interoperability is often restricted
to the exchange of image files or object geometry and the problem of managing
uncertainty is compounded. The four stages shown in Figure 2.2 represent the four
models of geographic space, namely field, image, theme and object (or feature)
models, and are typical of models in the integration of GIS and remote sensing
activities. These models only represent the conceptual properties of the data and
can be considered here as independent from any particular data structure that might
be used to encode and organize the data.

Gahegan and Ehlers (2000) developed an integrated error simulation model for
the transition from field (raw remote sensing) data to geo-objects. The description of
uncertainty followed that proposed by Sinton (1978). It covers the sources of error
as they occur in remote sensing and GIS integration (although other approaches
may be equally valid). Uncertainty is restricted to the following properties: (a) value
(including measurement and label errors); (b) spatial; (c) temporal; (d) consistency;
and (e) completeness. Of these, measurement and label errors, as well as uncer-
tainties in space and time, can apply either individually to a single datum or to
any set of data. The latter two properties of consistency and completeness can only
apply to a defined dataset, since they are comparative (either internally amongst
data or to some external framework). The findings of Gahegan and Ehlers (2000)
are summarized in Table 2.3. Other uncertainty issues in the integration of the two
spatial technologies can be related to scale and representation of the data (Bruegger,
1995; Guptill and Morrison, 1995) or the provision of lineage information
(Lanter, 1991).

New research on uncertainty deals with the development of advanced processing
techniques for information extraction from remotely sensed images. The inclu-
sion of contextual information (textures, neighbourhood) and object- or segment-
based analysis techniques, together with the application of fuzzy set theory
and artificial intelligence, challenge the standard image-processing strategies
(Wang, 1993; Ryherd and Woodcock, 1996; Lucieer and Stein, 2002; Ibrahim
et al., 2005). In a special issue of the International Journal of Remote
Sensing on ‘Uncertainties in Integrated Remote Sensing and GIS’, the editors
conclude:

Within the framework of uncertainties in integrated remote sensing and GIS, we can
describe the uncertainties in terms of positional accuracy, attribute and thematic accu-
racy, temporal accuracy, logical consistency, and completeness. In this special issue,
we mainly address the modeling of uncertainty in terms of attribute and positional
accuracy. Relatively less attention is paid to the issue of completeness or temporal
uncertainties. Modeling uncertainties in newly emerging datasets, such as laser scan-
ning data, high-resolution satellite images, InSar, and high spectral satellite images,
will be an area for future research (Shi et al., 2005).
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Table 2.3 Types of uncertainty and their sources in four models of geographic space

Field Image Thematic Object

� Measurement
error and
precision

Quantization of
value in terms
of spectral
bands and
dynamic range

Labelling
uncertainty
(classification
error)

Identity error
(incorrect
assignment of
object type),
object
definition
uncertainty

� Locational error
and precision

Registration
error, sampling
precision

Combination
effects
when data
represented by
different spatial
properties are
combined

Object shape
error, topo-
logical
inconsistency,
‘split and
merge’ errors

� Temporal error
and precision

(Temporal error
and precision
are usually
negligible for
image data)

Combination
effects
when data
representing
different times
is combined

Combination
effects when
data repre-
senting
different times
is combined

� Samples/readings
collected or
measured in an
identical manner

Image is
captured
identically for
each pixel, but
medium
between
satellite and
ground is not
consistent;
inconsistent
sensing, light
fall-off;
shadows

Classifier
strategies are
usually
consistent in
their treatment
of a dataset

Methods for
object
formation may
be consistent,
but often are
not. Depends
on extraction
strategy

� Sampling strategy
covers space,
time and attribute
domains
adequately

Image is
complete, but
parts of ground
may be
obscured
(clouds, trees)

Completeness
depends on the
classification
strategy (is all
the dataset
classified or are
only some
classes
extracted?)

Depends on
extraction
strategy.
Spatial and
topological
inconsistencies
may arise as a
result of object
formation

�, data or value; �, space; �, time; �, consistency; �, completeness.
From Gahegan and Ehlers (2000).
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2.4 Modelling positional and thematic error in the
integration of remote sensing and GIS

Positional and thematic uncertainties seem to be the dominant error sources in the
integration of GIS and remote sensing. We present an analytical model for the
combination of these uncertainties, based on the work of Shi et al. (1999).

2.4.1 Positional and thematic uncertainties

A typical integrated GIS–remote sensing analysis might require an inventory of the
land cover over a certain administrative area. The boundary of the area was digitized
from a map, and is available in GIS format. The land cover types are obtained
from a classified remote sensing image, using a typical maximum likelihood (ML)
classification (see Figure 2.3). For a thorough analysis, not only do the areas of the
different land cover classes have to be calculated but also their respective errors
(e.g. the spatial distribution of an error or uncertainty parameter). In this example,
two types of spatial data are involved: GIS and classified remote sensing data. It
can now be assumed that the GIS data have only positional uncertainties resulting
from the digitization and measurement process. The classified remote sensing data,

Figure 2.3 Land resources inventory using remote sensing and GIS techniques. ZT is a
pixel in the classified image; ZP is a GIS point close to a boundary; ZPAT is a point in the
combined layer with the same location as ZP and ZT
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on the other hand, contain only thematic uncertainties, which are the result of a
statistical classification process.

2.4.2 Problem formulation

On a digitized map in a GIS, we know P�ZP	X
∈Oj�, i.e. the probability that point
ZP belongs to a certain area Oj (e.g. a county). This is referred to as the positional
uncertainty indicator. X is a vector in two-dimensional Euclidean space, normally
X= 	X�Y
t , which describes the geometric location of point ZP. Typically, a remote
sensing image is classified using a maximum likelihood (ML) classification. For a
given pixel ZT	X
 that is geometrically located at X, its thematic characteristics are
determined by its position in n-dimensional feature space, where n is the number of
spectral bands of the remotely sensed image. Using ML classification techniques,
the probability that this pixel belongs to a specific class Ci, i.e. P�ZT	X
 ∈ Ci�,
can be calculated (Richards and Jia, 1999). Ci is one class type of the whole
class category set. This set is usually predefined in a supervised ML classification
procedure. The probability value per class can be used as a thematic uncertainty (or
certainty) indicator. Other accuracy estimators and other classification techniques
exist, which means that any other value for P�Zp	X
� can be used in the thematic
uncertainty description. After combining the classified remotely sensed image and
the GIS boundary layer, the combined probability can now be estimated:

P	ZT	X
 ∈ Ci
 ∧ 	Zp	X
 ∈ Oj
 (2.1)

For this combination, Ehlers and Shi (1997) developed an analytical model that was
based on: (a) the positional uncertainty of an area object; (b) the thematic uncertainty
of a classified remote sensing image; and (c) the combination of positional and
thematic uncertainties. To model the uncertainties of a two-dimensional object
(e.g. an area feature) in a vector GIS, they distinguished two regions, the (fuzzy)
boundary region and the interior region (Figure 2.4).

The difference between interior and boundary regions is based on positional
uncertainty. An object in a vector-based GIS is built of line segments. The error
at the end points of these line segments (or vertices of the area object) directly
affects the positional uncertainty of the object boundary. The region affected by
boundary errors is called the fuzzy boundary region. The interior region of an
area object is the region where the effects of the positional uncertainties of its
vertices are below a certain threshold (e.g. outside of 3 for a Normal distri-
bution) and can therefore be ignored. The interior region is influenced mainly
by thematic uncertainties that originate from errors in the classification process.
Therefore, its spatial uncertainty distribution can be derived by probability methods
commonly used in remote sensing classification. In the fuzzy boundary region,
however, both positional and thematic uncertainty factors contribute to the overall
uncertainty.



2.4 MODELLING POSITIONAL AND THEMATIC ERROR DURING INTEGRATION 29

Figure 2.4 Fuzzy boundary and interior regions. The positional uncertainties of boundary
points affect only the boundary region and not the interior region. The uncertainty of the
interior region is mainly determined by the thematic uncertainty

2.4.3 Modelling positional uncertainty

2.4.3.1 Line errors

Positional errors of GIS objects are mainly related to the problem of deciding,
for each object, which boundaries best describe its geometric extension. The identi-
fication of the object boundary is uncertain, usually due to errors in the digitization
and/or measurement procedures. This geometric approach works best for those
cases where the boundaries have been identified. In such cases, a decision has been
made regarding which areas belong to a specific object. In photo-interpretation, for
example, the decision about the extension of the object is often separated from the
measurement of the geometry of the object boundaries, because these are often digi-
tized after the interpretation was performed. In surveying, boundary identification
and measurement are generally combined in one process, but the fact that these are
still two operations remains. In such typical cases for the creation of GIS databases,
it might be that boundary curvatures can only be approximately represented by
means of discretized description of chains of points and line segments. Line errors
depend on the sampling density and can be derived from the analysis of digitized
points.

Point errors have been intensively investigated in disciplines such as geodesy and
surveying. For positional errors of lines, Perkal (1956, 1966) developed the epsilon
band model, which was further applied by Chrisman (1982) and Blakemore (1984).
The epsilon band is constructed as a simple buffer of constant width (epsilon) on
either side of a measured line, and the true location of the line is assumed to be
contained within the epsilon band. However, there is no provision to describe the
distribution of a measured line segment around its true location. Zhang and Tulip
(1990) and Caspary and Scheuring (1992) derived variances in X and Y direction
for an arbitrary point on the line segment, based on the laws of error propagation.
Dutton (1992) and Caspary and Scheuring (1992) used Monte Carlo simulation
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techniques to model the distribution of line segments and other geometric features.
The simulation approach, however, cannot provide a general analytical form of the
solution. To combine positional and thematic uncertainties, it is necessary to derive
the spatial structures and their error distributions for geometric features (Ehlers and
Shi, 1997).

To model the combined uncertainty, the positional uncertainties of area objects
must first be addressed. The basic geometric element of a GIS object is the point.
Two connected end points compose a line segment. A line feature is composed
of line segments. An area object is defined by its boundary line features. Thus,
we have a hierarchical procedure for building area objects: points, line segments,
line features, boundary line features and area objects. As mentioned above, there
exist well-developed models for the description of positional uncertainty of points
in geodesy and surveying. These models can be applied to solve the problem of
uncertainty description of fuzzy boundary regions.

A point is geometrically described by its coordinates. Consequently, errors in
coordinates constitute one of the components of positional uncertainty in a GIS.
The second component is caused by sampling and approximation of curved line
features by a sequence of straight line segments. This error is directly associated
with line segments. The coordinates of a point in a GIS are usually the result
of measurements, and of various processing steps, so each operation involved
can add to the overall error. These errors can be classified into three groups:
blunders, systematic errors and random errors. As techniques exist for the detection
of systematic errors and blunders, the uncertainty model deals only with random
errors. If the final coordinates can be expressed as a function of the original
measurements, the error characteristics of a GIS point can be analytically determined
by applying the laws of error propagation. Assuming that the errors are Normally
distributed and not correlated, standard statistical techniques can be applied.

With these assumptions, line and area boundary errors can be analytically
constructed based on Normal distribution of point errors and a Normal error distri-
bution perpendicular to the direction of line segments. Figure 2.5 demonstrates the
probability distribution around the true location of a line with end points �1 and �2

(for more details, see Shi, 1994; Ehlers and Shi, 1997).

2.4.3.2 Confidence region for line segments

As the true location of a GIS point is usually not known, the model has to be
modified to estimate from the error model the confidence region of measured points
and the edges that they connect. Let Z1 and Z2 be the measured locations of the
true end points �1 and �2. The next step is to derive a confidence region for the
line segment Z1Z2 because the precise location of the true line �1�2 is not known.
This procedure is based on a sampling density for line digitizing that allows the
construction of a line based on interpolated lines from point measurements.
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Figure 2.5 Probability distribution around the true locations �1�2

The derivation of the confidence region Jr is based on the distribution of the
points on the line. If the variance matrix of an arbitrary point Zr on the line
segment is known, we can derive �2 distributed statistics of Xr and Yr , and then the
confidence region Jr , for any arbitrary point �r on the line between �1 and �2. Jr is
constructed so that it contains �r , which has a predefined confidence level �, while
all other � of the line segment are contained in their respective confidence regions.
This involves an upper boundary condition, leading to the inequality (Ehlers and
Shi, 1997):

P	�r ∈ Jr� r ∈ �0� 1�
 > � (2.2)

The confidence region J of a line segment is the union of the sets 0r for all r ∈
[0,1]. One region, Jr , is a set of points 	x� y
t , satisfying:

Xr − c ≤ x ≤ Xr + c

Yr − d ≤ y ≤ Yr + d (2.3)

where:

c = k1/2��	1 − r
2 + r2�xx�
1/2

d = k1/2��	1 − r
2 + r2�yy�
1/2 (2.4)
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Figure 2.6 Confidence region of a line segment

The parameter k depends on the selected confidence level � and can be obtained
from a �2 table, k=�2

2�	1+�
/2. For example, for � =0�90� 	1+�
/2=0�95, we have
k = 5�99. A detailed derivation can be found in Shi (1994).

It is easy to verify that the maximum value of ��	1 − r
2 + r2��1/2 is obtained for
r = 0 or 1, whereas the minimum value is at r = 1/2. This means that the confidence
region is smallest at the centre of the line segment and largest at the end points
(Figure 2.6). With a risk expressed by the confidence level, we can state that the
true line is somewhere inside the confidence region.

2.4.3.3 Positional uncertainty of boundary line features

A boundary is composed of one or (usually) several line segments. In describing
positional uncertainties of boundary line features, two problems need to be solved:
the confidence region of boundary line features and its probability distribution.
The confidence region of a line feature can be constructed by the union of the
confidence regions of the constituent line segments. It provides an uncertainty zone
of the spatial extension of a line feature.

In describing positional error distributions of boundaries, one of the major prob-
lems is to understand the nature of the uncertainty in the region where two line
segments join (see Figure 2.7). Within this region, we have two different probability
values that a given point Q belongs to an object A: one is based on the uncer-
tainty distribution of line segment L1� which is denoted as P1	Q ∈ A
. The other is
based on the uncertainty distribution of line segment L2, i.e. P2	Q ∈ A
. To obtain
the overall probability that point Q belongs to object A, we need the combined
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Figure 2.7 The uncertainty of a line feature L12 is determined by the uncertainties of line
segments L1 and L2 and by considering the uncertainty of points in the joint region, e.g.
point Q. The line feature L12 is part of the boundary of polygon A

uncertainty distribution P1 ∧2 	Q∈A
 of the line feature L12, which is composed of
L1 and L2.

If P1	Q∈A
 and P2	Q∈A
 were independent, we could directly use the product
law of probability theory to solve this problem, i.e. P1 ∧2 	Q∈A
=P1	Q∈A
P2	Q∈
A
. Because the two line segments share one end point, however, we cannot assume
independence. An alternative is the use of fuzzy set theory (Zadeh, 1978). To
apply fuzzy set theory, we need to treat the probability values as corresponding
membership values. For example, the probability that Q belongs to object A is
treated as the membership value that element Q belongs to a fuzzy set A. We can
follow this approach because the subjective interpretation of probability considers
probability as a measure of belief. Thus, we can state (Shi, 1994):

P1∧2	Q ∈ A
 = min�P1	Q ∈ A
�P2	Q ∈ A
� (2.5)

which means we can use the minimum operation between the probabilities for
segments L1 and L2 within the joint region of two line segments. Accordingly, we
can calculate the uncertainty value for the composed line features of a polygon
boundary.

2.4.3.4 Positional uncertainty of area objects

An area object is defined as an area enclosed by a boundary line feature. The
positional uncertainty of an area object is determined by that of the boundary. As
shown above, the positional uncertainty affects mainly the fuzzy boundary region.
The positional uncertainty of an area object is described by the probability that a
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point (x� y) belongs to the area object (O), i.e. P�	x� y
 ∈ O� ∈ �0� 1�. When a point
‘moves’ from the outside to the interior region of the area object, the probability
changes gradually from 0 to 1. The probability distribution of the boundary region
is determined by the cumulative probability function perpendicular to the boundary.
Therefore, it allows a continuous range to describe uncertainty for area objects. In
comparison, the so-called epsilon band model to describe the ‘point-in-polygon’
problem, i.e. the uncertainty of an area object enclosed by a polygon, can only
distinguish five relationships between a point and the area object (Figure 2.8).
These are: ‘definitely in’ (point 5), ‘definitely out’ (point 1), ‘possibly in’ (point 4),
‘possibly out’ (point 2) and ‘ambiguous’ (point 3).

Using the probability distribution of line segments, we can describe the relation-
ship between a point and an area object by probability values varying continuously
within [0,1] (see Figure 2.8). This approach provides a quantitative indicator of
uncertainty and, moreover, facilitates the combination with thematic uncertainty
indicators. We can also characterize the positional uncertainty of an area object by
computing a probability frequency distribution. For example, with 10 probability
interval classes (i.e. 0–0.1, 0.1–0.2, � � � . , 0.9–1.0), we can calculate the result of
Table 2.4 for the area object in Figure 2.8. Of a total of 1638 pixels, 649 (about
40% of the area) have a probability of less than 90% that they belong to the area
object. The rate (40%) is dependent on the error of the vertices and the size of the
area object. If the error of the vertices is relatively small compared to the size of
the area object, the rate will be significantly lower than 40%.

2.4.4 Thematic uncertainties of a classified image

Thematic uncertainty in this context refers to the thematic uncertainty inherent in a
classification derived from a remote sensing image. The reason for this uncertainty
is that the classification is based on limited evidence. For demonstration purposes,

Figure 2.8 ‘Point-in-polygon’ description of uncertainty for an area object. For this devel-
oped uncertainty model (a), the uncertainty values vary continuously within [0,1]; for the
epsilon band model (b), uncertainty is distinguished only in five qualitative levels. Adapted
from Ehlers, M. and Shi, W. Z. (1997) Error modelling for integrated GIS. Cartographica 33,
11–21, courtesy of the University of Michigan Press
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Table 2.4 Frequency distribution of probability values of Figure 2.8

Prob. 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0 Total
Area 0 0 0 0 20 107 154 170 198 989 1638

The row ‘Prob.’ shows the intervals of probability values; ‘Area’ is the number of pixels located within a
certain interval (e.g. 20 pixels have a probability value between 0.4 and 0.5); ‘Total’ is the total number
of pixels in the study area. From this table, one can see the positional uncertainty of the area object
indicated by the numbers of pixels located within each probability interval.

we will make use of the probability vectors in the well-developed ML classification
technique as a basic thematic uncertainty indicator. The parameters used for classi-
fication in this technique are estimated from training samples, and then a probability
vector is calculated for each pixel in the image defining the likelihood of specific
class membership. The pixel is then assigned to the class with the maximum prob-
ability (Richards and Jia, 1999). For example, in an image with four classes (urban,
water, forest, agriculture), a pixel with the probability vector:

�P�ZP	X
 ∈ urban� = 0�35�P�ZP	X
 ∈ forest� = 0�32�P�ZP	X
 ∈ agriculture� = 0�30�

P�ZP	X
 ∈ water� = 0�03�

will be assigned to the class ‘urban’. The other probability values are usually
ignored. In the above case, however, there is only weak evidence that this pixel
actually belongs to the class urban (the probability is only 35%). If the maximum
probability value for each pixel is retained, the certainty of the classification result
can be described. If we attach the probability value P�ZP	X
 ∈ urban� = 0�35 to
the classification result, it is easy to see that this classification is very uncertain.
If the whole probability vector could be attached, a user might further learn that
the pixel could just as well be forest or agriculture (with probabilities of 32% and
30%, respectively). Based on the techniques discussed above, we can now combine
positional and thematic uncertainty assessments in the integration of GIS and remote
sensing data.

2.4.5 Modelling the combined positional and thematic
uncertainties

The ‘S-band’ model was developed to combine positional and thematic uncertainties
(Shi 1994; Shi and Ehlers, 1996). There are two alternatives within the S-band
model; one is based on the product rule, the other is based on a certainty factor
model with probabilistic interpretation. If two data layers are from two different
data sources, for example one is from GIS and another is from remote sensing
data, they are independent from each other. Thus, the product-rule-based approach
can be used to combine positional and thematic uncertainties. The uncertainty
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values are within the range [0,1]. For the general case with non-zero correlation
between the data layers, a procedure was developed based on a certainty factor
model with probabilistic interpretation. This model is also used in expert system
design for uncertainty-based reasoning. With this model, the range of uncertainty
expressions is extended from [0,1] to [−1,1]. This is particularly important for a
reasoning that includes uncertainty indicators covering both positive and negative
ranges.

When combining a GIS layer with positional error and remote sensing data, it can
be assumed that the uncertainties of the two datasets are independent of each other.
We can therefore directly apply the product-rule model to calculate the combined
positional and thematic (PAT) uncertainty (see Figure 2.9):

P�ZT	X
 ∈ Ci� ∧ �Zp	X
 ∈ Oj� = P�Zt	X
 ∈ Ci�P�ZP	X
 ∈ Oj� (2.6)

where P�ZT	X
∈Ci� is the probability that ZT	X
 belongs to class Ci and P�Zp	X
∈
0� is the probability that point Zp	X
 belongs to area object Oj.

GIS Remote Sensing 

Positional Uncertainty

Uncertainty of Points

Uncertainty of Line Segments

Uncertainty of Line Features

Uncertainty of Area Boundaries

Thematic Uncertainty

Uncertainty of Pixels

Uncertainty of Classified
Image

Combined Uncertainty of Positional and Thematic Uncertainty (S-Band Model)

Remote Sensing and GIS Integration 

Figure 2.9 Diagram of modelling PAT uncertainty of objects using the S-band model. After
Gahegan and Ehlers (1997)
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To demonstrate the effects of thematic uncertainties, a Landsat test image with
four classes (urban, forest, grassland, water) was classified using ML classification
techniques. To compute the frequency distribution of probability values, we again
use the 10 intervals (0.0–0.1), (0.1–0.2) � � � (0.9–1.0) (Table 2.5).

Given a boundary layer with positional uncertainty indicators and a classi-
fied remote sensing image with thematic uncertainty indicators, an overlay oper-
ation in GIS can be used to solve the uncertainty combination problem. The
combined uncertainty for the test area is given in Table 2.6 and combines infor-
mation about the size of each land cover class within the area and the uncertainty
that is associated with this class. For example, the size of the land cover type
‘forest’ within the test area is 1280 pixels, of which 80 pixels have a certainty
between 0.1 and 0.2, 344 pixels between 0.2 and 0.3, and 240 pixels between
0.9 and 1.0.

One result that is evident from a comparison of Tables 2.5 and 2.6 is that after the
PAT combination more pixels have lower probability values. For example, within
the interval 0.9–1.0, the number of pixels for the class ‘urban’ is reduced from 13

Table 2.5 Maximum likelihood classification and thematic uncertainty, expressed as
frequency distribution of maximum probability values

Prob. 0.0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0 Sum

Urban 0 0 56 13 3 9 7 5 11 13 117
Grassland 0 0 18 17 4 15 7 11 12 138 222
Water 0 0 12 0 0 0 0 0 0 7 19
Forest 0 0 394 57 65 48 65 73 126 452 1280

Total 1638

The column ‘Sum’ shows the total area in pixels that were classified as ‘urban’, ‘grassland’, etc. The
table also shows the distribution of each class within the probability intervals, thus describing the
uncertainty of the classification.

Table 2.6 The statistics of a classified image with combined uncertainty indicators

Prob. 0.0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0 Sum

Urban 0 24 42 7 7 15 12 4 2 4 117
Grass 0 9 19 13 18 26 25 29 29 57 222
Water 0 4 8 0 2 4 1 0 0 0 19
Forest 0 80 344 62 95 93 109 133 124 249 1280
Total: 1638

The column ‘Sum’ is the total area in pixels that were classified as a certain land cover class. The table
also describes the PAT uncertainty of each land cover class by providing the number of pixels within
each probability interval.
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to 4, for ‘grassland’ from 138 to 57, for ‘water’ from 7 to 0 and for ‘forest’ from
452 to 240. On the other hand, the number of pixels with high uncertainty values
has increased. For example, within the interval 0.1–0.2, the number of pixels for
the class ‘urban’ has increased from 0 to 24, for ‘grassland’ from 0 to 9, for ‘water’
from 0 to 4 and for ‘forest’ from 0 to 80. With the combined uncertainty, we can get
a quantitative description of the extent to which the overall uncertainty is increased
by the combination of positional and thematic uncertainties.

2.5 Conclusions

In this chapter, we have presented an overview of taxonomy and uncertainty issues
for the integration of GIS and remote sensing. It is evident that progress has been
made over the last 20 years or so. It is also clear that for both problems research
is still required. In particular, an integrated taxonomy and system-independent
description of high-level GIS and remote sensing operators is still missing. Very
scant research has been done on this issue.

This is different from the issue of uncertainty descriptors for the integrated GIS–
remote sensing datasets. The importance of this issue is evidenced by a number of
research initiatives and scientific publications. It can be seen from the S-band model
that the quantification of uncertainties for the integration of remote sensing and
GIS is possible. It is also evident that within the other aspects of uncertainties, e.g.
time, topology and completeness, this model is just a first step towards a complete
uncertainty model – if it ever exists.
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3.1 Introduction

The integration of geographic information systems and remote sensing essentially
involves combining data provided by both, sensibly and consistently. In this chapter
we examine the various aspects of data fusion issues related to GIS–remote sensing
integration. In the first section we explore the reasons why such fusion is desirable
or, in some cases, badly needed. In the second section, the issues and problems
inherent in GIS and remote sensing data fusion are introduced, while in the third,
possible solutions are outlined. A final section draws some conclusions.

3.2 Why do we need GIS–remote sensing fusion?

Spatial information technologies are increasingly used in combination to support a
variety of activities related to, or based on, spatial phenomena. These technologies
are many and diverse, but can be roughly grouped into the following areas:

• Remote sensing and photogrammetry.

• Computer vision and artificial intelligence.

• Virtual reality and multimedia.

Integration of GIS and Remote Sensing Edited by Victor Mesev
© 2007 John Wiley & Sons, Ltd.
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It is widely recognized that all technologies contribute to the completion of many
varied applications. Their integration often follows a scheme in which the data
manager, represented by the GIS, has a pivotal role. All of the other systems are
linked to the data manager, activated and accessed through mutual data interaction.
When it comes to applications, remote sensing data clearly have the firmest connec-
tion with physical reality. As such, a very tight connection between these data and
the underlying GIS must be ensured for effective implementation. This connection
has various aspects, which are separately treated in the following subsections.

In a more general framework, we justify the necessity of GIS–remote sensing
data fusion by looking at the new frontiers of interaction among GIS, distributed
computing systems, telecommunications networks, multimedia processing and
global navigation systems (GPS). This comprehensive framework, called telegeo-
processing (Xue et al., 2002) is being gradually introduced into our lives, driven by
many market forces and science developments. First of all, the possibility of sharing
data seamlessly on various platforms by using different communication tools is one
of the driving forces of modern life, as demonstrated by the exponential growth
of cellular phones and GNS receivers for road navigation. From the standpoint of
remotely sensed data, the expansion of transmission bandwidths and computational
power of on-board processors has led to huge image databases and the processing
of very large files. Moreover, web interfaces (and the rise of WebGIS systems)
are now commonly implemented, along with the exploitation of grid computing
techniques currently tested for earth observation data levels 2 and 3 processing.
Similarly, real-time and on-board processing of remotely sensed data requires that
many sources are jointly considered, such as meteorological data for atmospheric
corrections and digital terrain models for geometric corrections. Often, these data
are stored in vector format and in GIS layers that need to be quickly and precisely
combined with raw imagery to provide user-friendly products at the right time and
immediately to the market.

Consequently, the need for data fusion involving GIS and remote sensing is
already high and steadily increasing to the point where a taxonomy is necessary.
Ideas on how to deal with such a complex scenario are proposed and discussed
in the following sections, in relation to ‘application-driven’ examples outlining the
juxtaposition of remotely sensed and vector data into a GIS (as in de la Ville et al.,
2002) and how to exploit GIS and remotely sensed data sources.

3.2.1 Remote sensing output to GIS

The simplest way to integrate remote sensing with a GIS is to convert interpreted
remotely sensed data into a layer just like any other in a GIS. This is standard prac-
tice for classification schemes where the thematic map is deliberately disassembled
into layers, each one representing a particular class. Another remote sensing to GIS
example is to extract geometric features from algorithms, such as those devoted to
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building or man-made structure identification and recognition, into vectors that can
be translated into GIS formats.

Examples of these applications include the work by Chica-Olmo et al. (2002)
and Mason et al. (1997). Both presented decision systems using a GIS and both
used remotely sensed data, or maps derived from remote sensing data, as inputs
to the decision processes. However, such situations are far from a trivial use of
remotely sensed data within a GIS because they require the selection of the most
relevant subsets of information. In Chica-Olmo et al., whose study was devoted
to gold-rich area identification, remotely sensed imagery and existing thematic
maps were inserted in the GIS database, while in Mason et al. the target was
informal settlement management. 3D data representing shelters and shacks were
extracted from aerial surveys and combined with other information to understand
the dynamics of rapidly changing suburban and deprived areas. In all of these
examples, we need to stress that no data fusion techniques are applied as long as
remote sensing output is just translated into GIS. However, often this step is just a
part of a methodology with broader aims, devoted to using the new layer to perform
a spatial analysis integrating the already available information in the GIS with the
new one, independently extracted from remotely sensed imagery. In this sense, the
operations mentioned above may be seen as preliminary to data fusion and, since
they allow further processing, as a fundamental and mandatory part of the fusion
process.

3.2.2 GIS input to remote sensing interpretation algorithms

There is a second easy option for fusion of GIS and remote sensing, i.e. the exploita-
tion of GIS data as known input to supervised image interpretation algorithms. GIS
layers are considered as a priori knowledge, useful for understanding the remotely
sensed scene. Therefore, they may be used for defining training areas accurately
and efficiently, reducing the costs of ground surveys or the errors due to manual
image interpretation. GIS data, indeed, are always considered as more precise, at
least from the point of view of labels and legends, while their spatial accuracy
relative to remotely sensed imagery may be insufficient. This approach is applied
in Walter (2004) to object extraction and identification. In that study GIS was used
to define training areas for a first classification. By considering a number of object
properties computed in the image using GIS object boundaries as input, GIS spatial
information was also used in reference to object identification. These properties
(e.g. mean grey and textural measures values) were used to assign new objects to
already existing classes by a second step, such as an object supervised classification.

A similar approach, applied to the task of road database verification, was proposed
in Bonnefon et al. (2002). It is interesting to note that this paper discriminates
between the two tasks of GIS data verification and GIS data update. For the first
task, remote sensing interpretation is guided by a priori known information coming
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from GIS layers. In the second step, by contrast, remote sensing leads the process,
and GIS may be used to infer the identification of an object (in this work a linear
feature) by using the local spatially adjacent information, e.g. the land cover of the
surrounding areas. Another important difference with respect to the previous work
is that GIS- and remote sensing-based information (i.e. the output of a combination
of line and edge detectors) are fused, using Dempster–Shafer rules to validate the
matching between the detected features and those already in the database.

Generally speaking, GIS information is used in many research applications to
introduce ancillary information that it is not possible to capture from remote sensors.
This is true, for instance, for land use classes (as opposed to land cover) that are
recognized using existing and digitized maps or administrative boundaries (Tapiador
and Casanova, 2002). Similarly, GIS information is used to integrate geomorpho-
logical maps with representative soil profiles for landfill identification and classi-
fication (Maksud Kamal and Midorikawa, 2004). In any situation the geographical
information system is used to manage remotely sensed data in conjunction with
sparser or very different data sources, and to apply procedures fully exploiting the
spatial distribution of all the sources. In other words, the geographical nature of the
sources is dealt with in the GIS, while the spectral (point-wise) or local (in a local
window) information is classified or extracted in the remote sensing processing
environment.

3.2.3 Example: urban planning check and update

As an example of GIS–remote sensing data fusion at this level, we can examine
checks and updating in urban planning. Understanding the content of a remotely
sensed image may be the basis for identifying the elements of the observed urban
area to cross-check the development with plans and assess land use efficiency and
other parameters of interest. This is a crucial point in urban area management and
is related to urban planning, urban planning and urban environmental monitoring.
A number of techniques are available for this task, and many of them refer to GIS
as the final output stage of the procedure. A list of satellite-based techniques related
to this task (mainly based on very high-resolution sensors in the optical and near-
infrared bands) is presented in Guindon (1997). A selection of techniques relevant
to urban planning and based on the fusion of GIS and remote sensing information
follows.

Approaches to understanding images of urban areas differ. One is to attempt full-
scene interpretation (not necessary in our case), another is to aim at a predefined
goal (which can be, for example, detecting buildings) and yet another is to simply
aid the human interpreter in accomplishing his/her task. Given the limited scope
of the images to be analysed and the defined purpose of the analysis, our choice
of systems will mostly focus on goal-directed systems, without disregarding other
types of systems where appropriate. Xiuwan (2002) provides a comparison of
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many methods, rather than a single method. Post-classification is used, and the
importance of ancillary data (possibly integrated into a GIS) and improving single-
date classification performance are stressed. As in other post-classification methods,
emphasis is placed on improving single-date classification performance. The post-
classification analysis is equivalent to adding GIS information after the spectral
analysis is completed, i.e. feeding a GIS system some rules with the output of one
or more urban classifier. In this work the classifiers are statistical and pixel-based,
while spatial relationships are uncovered and exploited in the GIS framework.

Finally, an example of knowledge-based integration of GIS data into a remotely
sensed data spectral classifier is found in Stefanov et al. (2001), where ASTER
data have been used to analyse a large urban area in Arizona. Moreover, they
were coordinated with many different layers of information. The results are encour-
aging, and have been recently proposed in a second paper on the same area using
LANDSAT data, which proves the robustness of the system. A very interesting
point of view may be added to this series of work if a change detection chain is
considered for urban map updating. In this case, region-based change detection is
usually required by the final user, therefore a cost function, taking into account the
user requirements, is often the key to successful acceptance of the final change map.
This consideration leads us quite naturally to the topic of the integration of GIS
and remote sensing data. An interface to and from a GIS layer is usually essential
for providing information that is valuable for final users, especially in urban areas.
This may lead to a direct comparison of one-date classification to a GIS layer, as
in Prol-Ledesma et al. (2002), or drive the classification by means of the already
considered GIS layer (Janssen and Molenaar, 1995; Smith and Fuller, 2001).

In summary, the problem of urban planning through urban area monitoring and
exploiting remotely sensed images and GIS has been faced using many approaches.
Indeed, there are techniques that use remote sensing for GIS analyses, or GIS
layers as ancillary data for remote sensing classification. The cited methods have
been widely used and analysed and are thus robust and mature enough to be used
and integrated into marketable products. Many expert systems based on available
GIS products or procedures built around remote sensing commercial classifiers are
already operative and attempt, as we will see in the following section, to translate
GIS–remote sensing data fusion into common practice.

3.3 Problems in GIS–remote sensing data fusion

This section highlights some of the problems involved in the fusion of remotely
sensed data and GIS features or layers. These may be summarized by the
following:

• Both the GIS and the remotely sensed data are delivered by companies and public
agencies which do not agree on a standard. Even if, in principle, an urban plan
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definition update system works for any GIS and any image, it should be carefully
tuned for the different datasets. This, in turn, reduces its range of applicability
and generalization properties.

• There is also a difference between the legends of the two information sources.
It is pretty clear, for example, that the concept of ‘street’ in a GIS municipal
database is different from ‘street’ in a topological sense, which is (at best) what it
is possible to extract from remotely sensed data. The question of how to translate
between administrative boundaries and geographical boundaries is another well-
known example.

• It is also interesting to investigate how to combine related information from very
different sources, such as the street network, street widths, and real-time traffic
measurements from in situ sensors. In order to feed traffic models and forecast
performance of traffic control systems, this combination is necessary.

As a result of the previous points, we may assume that we need algorithms for
information rather than data fusion. In other words, even if the algorithms high-
lighted above may be labelled in a generic way as belonging to data fusion methods,
information fusion is mandatory to achieve a true integration of the two sources. In
the urban mapping update example, the information coming from remotely sensed
data is geometrical and related to the physics of the streets as patches of particular
land covers. The information from GIS may be related to administrative, traffic and
business value information. The use of both data types may improve knowledge of
the urban environment, seen as a complex system, with many inputs and outputs.
In the following we would like to give a more detailed analysis of each of these
points.

3.3.1 Lack of consistent standards

As noted above, the first problem is related to the lack of a unique standard, not
only for GIS but also for remote sensing imagery. This problem is continuously
exacerbated by the common practice of assigning each new satellite (if not sensor)
its own data format, requiring new input routines to insert them in existing software.

On the GIS side, even if many national and international bodies (see European
Commission, 2004; Rao et al., 2002) are working toward the definition of a common
standard for GIS, there are at the moment many possible ways to store data in
GIS. These ways often reflect proprietary techniques by GIS vendors, and are
disclosed to the public only for inter-operability issues. Finally, as pointed out in
many documents, it is considerably difficult to promote environmental monitoring
relying solely on national data sources. Therefore the need for harmonization at an
international level is really important.

To this end, the European Union recently established an initiative to create an
infrastructure for spatial information in Europe (INSPIRE). It will help to make
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geographical information more accessible through harmonization efforts in the
fields of spatial data specifications, interoperability of spatial data services and
data-sharing policies. In this way INSPIRE will support a wide range of purposes,
directly or indirectly related to environmental policies and sustainable develop-
ment (INSPIRE, 2005). Of course, this is just an attempt, and related to European
regional issues only, so it does not provide a final answer to the question of when
a common standard will be available. However, it looks as though INSPIRE, at
least theoretically, marks a step in the right direction. The hope in the scien-
tific community is that a general standard will finally arise. Unfortunately, this
will happen only when the market requires it. As a matter of fact, the limited
number of actors in the GIS–remote sensing arena, most of them public (i.e.
able to impose their own standards) or very large companies, has reduced the
possibility of such a solution for now. The greater availability of data and the
need for solution may provoke a development in a different direction in the near
future.

3.3.2 Inconsistency of GIS–remote sensing accuracy, legends and
scales

The need for data integration also requires a common base. This is especially
different for remotely sensed data and GIS layers, since they do not come from
the same source and therefore carry different uncertainties, and refer to different
legends and work on different scales.

As for uncertainties, please refer to Chapter 2 of this book for a detailed analysis.
It is sufficient to say in this analysis that it is mandatory not only to take care of the
uncertainties of the multiple sources and track the combined uncertainties in order
to manage them. It is also important to consider the nature of such uncertainty,
to weight the importance of the sources. For instance, spectral uncertainties at
the sensor translate into lower affordability of the classification results and lower
mapping accuracy, but this is true at the full resolution of the data, while at a coarser
scale this may not necessarily be the case. As a result, the uncertainty of the fusion
between remotely sensed data and a GIS data layer is different with respect to the
scale of the fusion.

In another example, the positional accuracy of a very high-resolution satellite
image affects the results of road extraction procedures if the inputs include the
shape of the object as it was originally stored in a GIS layer. In this case, the
relative accuracy is far more important than the absolute accuracy.

As for legends, we may use as an example urban area characterization and
problems related to land use (to which urban planners and their GIS usually refer)
and land cover (which is what remote sensors are able to classify). The algorithms
used to obtain classify land cover have long been tested, and for many datasets and
sensors it is clearly evident to the scientific and user communities what it is possible
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Table 3.1 Urban land use classes from European and US classification systems (level 3)

CORINE land cover (EU) USGS modified Anderson scheme (US)

1.1.1 Residential continuous urban fabric 2.11 Single-family residential
1.1.2 Residential discontinuous urban fabric 2.12 Multi-family residential
1.2.1 Industrial or commercial, public and

private unit
2.21 Commercial/light industry

1.2.2 Road and rail networks and associate land 2.22 Heavy industry
1.2.3 Port areas 2.23 Communications and utilities
1.2.4 Airports 2.25 Agricultural business
1.3.1 Mineral extraction sites 2.26 Transportation
1.3.2 Dump sites 2.27 Entertainment/recreational
1.3.3 Construction sites
1.4.1 Green urban areas
1.4.2 Sport and leisure facilities

to obtain and at which accuracy level. On the other hand, land use legends usually
refer to economic or administrative information, and cannot be directly related to
the physics of the interaction between electromagnetic waves and the earth surface.
As a result, it is fairly difficult to match patterns of land cover into land use classes
if one starts from remotely sensed imagery. This becomes almost impossible for
some objects whose characterization relies on truly independent sources. Take, for
example, the difference between post offices and shops, which is important from
the user’s point of view but is negligible or null from the point of view of remote
sensing.

The view is further complicated by the huge difference between legends proposed
and used for the same task by different agencies/administrations. In Table 3.1
we offer a very basic comparison between level 3 urban legends adopted by the
European Union and the USA. Many classes clearly overlap, but in general no
direct translation is possible without a segmentation and reclustering procedure. No
GIS layer for urban areas is at the moment truly exploitable across the Atlantic
Ocean.

Finally, the scale issue is also a very important one, since the same object
assumes a different meaning with respect to the scale and its neighbourhood. The
analysis of a geographic scene at different resolutions reveals different details and
information, and often leads to very different results. The ability, or the possibility,
to combine information referring to different scales is one of the points discussed in
the current literature and implemented in recent image interpretation algorithms and
software. For example, e-cognition software (Benz et al., 2004) is able to refine the
original segmentation of the scene based on spectral and local spatial information
(e.g. texture), using a hierarchical network of relationships among the objects into
which the scene was segmented at different scales. The same approach, although
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the segmentation and the scale analysis is integrated into one single step, is used
in Hall et al. (2004). A watershed segmentation is applied to the scene after it is
decomposed in a continuous set of scale-dependent features, each one with its own
particular range of significance.

3.3.3 Different nature of the two sources

The difference between the two sources is among the most pre-eminent reasons for
a reduced diffusion of fusion approaches. It may be paired with the problem of
defining the ‘quality’ of data coming from these sources for a given application,
before even starting to think of any fusion.

Indeed, the differences prevent the comparison of the sources, which is the first
step to an efficient data fusion. How can we manage to fuse datasets if we do
not know their utility for a given task? Simply using all the available data sources
usually does not help, because an informed choice of the ‘best’ sources often
gives the same results and without the need to consider very different sources.
Sometimes, this process to reduce the inputs (usually labelled a feature-reduction
process) to the most meaningful ones results in a better solution of the applica-
tion problem. If the number of features to be used is very large, it may be that,
using all of them, a worse result is obtained. This is the well-known Hughes
phenomenon (Hughes, 1968), which appears, for instance, when dealing with very
fine spectral (e.g. hyperspectral) remotely sensed data (Shahshahani and Landgrebe,
1994), where the discrimination capability of the different land covers is somehow
masked by the large or very large number of wavelengths used to characterize the
scene.

Feature reduction, however, calls for the definition of a ‘discriminatory’ index.
This, in turn, requires an assessment of the utility of each dataset (or part of a
dataset) for the specific task. The task deserves careful attention, as shown by the
survey among stakeholders reported in Meeks and Dasguota (2004). The geospatial
information utility developed as a result, even if proposed by the authors as a
proof-of-concept more than a real-world application, paves the way for more refined
solutions. The point is that the user and producer communities must agree on a
number of indicators that are useful to all of them to understand the really important
characteristics of a GIS or a remotely sensed dataset. A statistical analysis of the
weight to be used for the combination of these indicators may be run consequently
to reduce the available dataset to the most useful for a given application or task.

The above-cited research work is based on very simple and basic indicators,
such as currency, vertical and horizontal accuracies, datum and form of the data.
However, the issue of indicator definition for many applications is currently the
subject of extensive analysis. Generally speaking, the definition of these indicators,
connected to a given task for which remotely sensed and GIS data may be exploited,
may be considered as the first step toward a full realization of this idea.
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We may, for instance, refer to urban indicators. A standard definition of an urban
indicator is a measure that summarizes information about a particular subject. It
provides a reasonable response to specific needs and questions asked by decision
makers and policy makers. It also provides an objective description of the conditions
of the urban area as they relate to the goals of the community. Indicators reflect
the trend of development and also provide quantitative and qualitative information.
Based on the previous sections, we may state that urban remote sensing may be
useful to urban indicators in the following areas:

• Biophysical/health, i.e. air and water quality, food quality, land contamination,
public sanitation, etc.

• Biophysical/use, i.e. conservation of natural resources, open space, etc.

• Infrastructure, i.e. access to basic services (health, sanitation facilities, garbage
disposal structures, etc.), energy, transportation (road networks, railroads,
bridges), city composition (residential, industrial areas).

More complex applications correlate remotely sensed data with other indicators, in
areas such as:

• Demographics, i.e. population characteristics (density, distribution), age structure,
fertility, family structure, etc.

• Socio-economic, i.e. income, political stability, urban governance, financial
performance, unemployment, literacy, etc.

Consequently, there are still serious problems when implementing urban indica-
tors in the policy cycle. Most major economic aggregates that measure the health
of the urban economy, such as city product, investment or trade, are not detectable
by remote sensing. Data that describe the condition of the population, infrastructure
and the environment may be partially available, depending on the topic, but are
seldom collected within a consistent framework. Data that measure the internal
spatial structure of the city, its economy and the distribution of opportunities are
the only data that offer a sufficient degree of precision.

Moreover, since few final users understand the potential and limitations of urban
remote sensing, there is often no clear idea which territorial indicators related to
urban analysis may be extracted from remote sensing data. Finally, due to technical
characteristics of the algorithms applied to the collected data, indicators derived
from remote sensing sources tend to emphasize physical environmental data and
land cover rather than land use. As a matter of fact, they are often computed
without the involvement of the final users and with a limited use of ancillary
sources.

GIS can help overcome some of these problems. Access to information, the
ability to process it, and the generation of alternative outcomes are essential in
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supporting decision making. By maintaining databases of a wide variety of spatial
and non-spatial data, GIS plays a fundamental role in the planning process. Infor-
mation integration on the basis of a shared geographic footprint is seen as one
of the major strengths of GIS. Beyond data integration and access facilitation, the
power of GIS as a decision support tool stems from its analytical and synthesizing
potential.

As a final note, we would like to stress that urban indicators are currently
used inside the Global Monitoring for Environment and Security initiative (GMES)
promoted by the European Union and the European Space Agency. The GMES
Urban Services (GUS; Gamba and Dell’Acqua, 2004) project has been investigating
some of these indicators and the availability of remote sensing (mainly) and GIS
data useful with respect to them.

3.3.4 Need for information rather than data fusion

All the previous examples illustrate that information is more important than orig-
inal data fusion. In other words, since it is difficult to combine the original data
because of the above-mentioned problems, it may be interesting to extract some
kind of common information and combine the two views of the same thing.
The usual example for a digital cadastral is the extraction of the shape of a
built-up structure, recognized as a building, using remotely sensed data and its
combination/comparison with existing shape files already available in the GIS
system.

Following the definition of data fusion in Wald (1998), and considering the
interesting discussion in Varma et al. (2003), we may say that remote sensing–
GIS data fusion may be classified as a data compilation/assimilation problem
in one of its more complex forms. Information in different formats (raster
and vector), with different scales and with heterogeneous spatial and spectral
attributes, should be merged, also taking into account different legends and quality
measures.

The major problem in this combination is the inability to measure, or the
complexity of measuring a priori, the quantity of information carried by a data
source. In turn, this prevents a wise selection of the best subset for a given task.
Even using advanced statistical approaches, such as evidential reasoning, that allow
the combination of different sources in a common framework, there is no way
to define the degree of evidence of the datasets. Therefore, users are forced to
design optimization rules based on algorithmic performances, rather than really
understanding the relevance of each source to the application being tested. For
instance, in Peddel and Ferguson (2002) the suggested solutions to this problem are
the exhaustive search in the multidimensional input space, computationally very
demanding, or the ‘independent search,’ which assumes that each input variable is
unrelated to the others.
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3.3.5 Example: population mapping through remote sensing

As an example of the problems inherent to remote sensing–GIS fusion, we consider
population mapping. The application is very interesting, especially for fast-growing
or third-world countries, where urbanization creates huge changes in the population
distribution in the country. It is also important for humanitarian purposes, for moni-
toring informal settlements and refugee camps and adequately allocating resources
for the people in them. Nevertheless, remote sensing approaches to population
mapping suffer from the above-mentioned issues of accuracy, mainly due to the
need of VHR multispectral images for recognizing man-made structures and their
extension, as well as single residential structures. But the precision obtainable by
current systems is not comparable with existing GIS data for these areas, which
are usually derived from much coarser (or more aggregated) sources. Alternatively,
sparse or very sparse point-wise information may be available. This also offers a
good example of the scale issues, since these different sources of information had
to be considered on different levels of aggregation, and the fusion must necessarily
be devised in a multiscale environment.

As this is the general framework of the problem, we should say that there is
at the moment no global solution. There are instead a good number of papers
in the technical literature addressing some of these issues and providing partial
solutions. They are often based on ad hoc solutions, and do not consider more
than one remote sensing and one GIS source at the same time, which makes them
not really applicable to many situations. The most important and widely known
methodology is that studied in Elvidge et al. (1996) and Sutton et al. (1997),
based on the use of night-time satellite imagery from the DMSP satellites. A
correlation between these measurements and population data has been found, and
this may be improved using more remote sensing sources or land use informa-
tion (Elvidge et al., 1999), but it still needs to be carefully tuned for different
parts of the world. As a matter of fact, one may expect that the correlation is
different because of different ways of life, availability of electrical power and so
on. The fusion with GIS data containing this information may be a possible solu-
tion, but this would be possible only using a multisource integration process. GIS
data are made available by different administrations and have different legends,
resolutions and other attributes. So, it is a really challenging problem still to be
addressed.

One good example of a project addressing these issues is the Urban–Rural
Database project, proposed and developed by the Centre for International Earth
Science Information Network, Columbia University, in collaboration with the Inter-
national Food Policy Research Institute and the World Bank. The aim of the project
is to use night-time imagery from meteorological satellites to derive urban bound-
aries and connect them with population databases. In this project, nocturnal lighting
is used to provide an estimate of the population by showing its activity in industri-
alized countries. In particular, this work (Pozzi et al., 2003; Pozzi and Small, 2002)
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provides a grid of aggregated population data with a global coverage, using urban
area boundaries detected from satellite imagery.

3.4 Present and future solutions

The problems introduced and discussed in the previous section have been addressed
in different ways in the technical literature. At the moment there is no emerging
methodology that looks like the ultimate approach. Each of the proposed solutions
has its advantages and drawbacks, and we will try to provide a list of them after
a brief introduction. Moreover, we must say that there is no place where all of
the above-mentioned problems have been discussed in detail and addressed in a
comprehensive framework. Therefore, the issues introduced in this chapter can be
thought of as a series of windows overlooking a complex landscape, each window
offering the reader a different view of the same problem and a possible solution
to that particular view. The general framework for the fusion problem may be
inferred from these partial views, and therefore will be provided at the end of this
excursus, in the Conclusions section. Finally, some of the proposed solutions are
just a glimpse of what is treated in more detail in other chapters of this book. They
are considered here because they are mandatory for the characterization of the data
fusion framework. The complete discussion of these issues is to be found in those
chapters.

3.4.1 Multiscale analysis

The first characteristic of an effective methodology able to integrate GIS and remote
sensing imagery is that it must be capable of working at different scales. The
simplest translation of this concept is that the imagery should be decomposed,
for instance by a pyramidal approach, into different copies at different ground
resolutions. Working with these coarser copies of the original data may help in
combining information coming from GIS layers, which may have different spatial
accuracy, or make available aggregated data with a different spatial distribution in
the scene.

This may be useful, for instance, in the extraction of objects that are of different
sizes but maintain certain topological characteristics or relationships among them-
selves or with other objects. If finer resolution is used to analyse the scene, the
interpretation must be connected through the scale (resolution) range, in addition
to the spatial connections and (possibly) the temporal ones. Therefore, a merging
strategy of the results at each resolution should be carefully designed. As an alter-
native, simultaneous extraction at higher resolution should be considered, which is,
in any case, a more complex problem.

However, multiresolution is not the only way to cope with multiple scales in
GIS–remote sensing fusion. A more refined approach involves taking into account
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the local scale of the objects in the scene, and adapting the analysis to this locally
scaled neighbourhood. In this case, the combination of remotely sensed data and
GIS may be adaptive to the context and be more efficient, since it depends directly
on the interpretation of the image. This approach has been more recently proposed
for image processing and remote sensing analysis in Gamba et al. (2004), where
texture measures extracted from the co-occurrence matrix are computed using an
adaptive window width, related to the local scale. The latter is computed using a
semivariogram analysis in the local neighbourhood of each pixel, where the size
is limited from the global scale of the whole scene. Note that in the cited paper,
the approach was not used for GIS information combination, but it may be easily
generalized for local scale characterization as a preliminary step to this combination.
In particular, the procedure is based on three steps and is presented in Figure 3.1.

The two steps are, as mentioned before:

1. A global-scale search, aimed at defining the maximum spatial scale depicted
in the image to be analysed.

2. A local-scale search, aimed at refining the scale analysis, looking only at the
local neighbourhood of a pixel, in a search area defined by the previous step.

In the first step the whole image is considered as a unique environment, and the top
level of the spatial scale range is set by a global scale analysis applied to the whole
dataset. The reason for this step is the need to automatically obtain information
about the dimensions of homogeneous texture patches in the image. The situation is
complicated in remotely sensed data, because the scale of these features is naturally
a function of the pixel size, and not only of their actual, real-world size. So, by
looking at the whole remotely sensed image as a unique environment, we find the
spatial scale of the land cover classes in the data. The second step allows a finer
detailed analysis of the image in greater detail, but now we can limit ourselves to a
smaller neighbourhood of each pixel, not larger than the global scale just extracted.

Scale analysis
through

semivariograms

Co-occurrence
texture

computation

HDI
(feature

selection)

Fuzzy
ARTMAP
classifier

Adaptive scale
textures

training set

Figure 3.1 Multiscale automatic segmentation of a scene, using global as well as local
scales, computed by means of the semivariogram analysis
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For both scale analyses, the approach proposed in Townshend and Justice (1988),
and used in Chen and Blong (2003) as a reference for the alternative wavelet
algorithm, is implemented. In particular, the semivariograms are computed for the
whole image or a subpart of it. The semivariograms are computed for any possible
length, up to half the dimension of the studied area. Then, the maximum of the
semivariogram curve is identified, and the corresponding length is the scale we are
looking for.

3.4.2 Fusion techniques

The final piece of our puzzle is the definition of an algorithm where the above-
mentioned characteristics may be integrated. Even for this step there is no absolute
winner. Moreover, since this work is not aimed at providing a complete taxonomy
of all the possible GIS–remote sensing fusion approaches, but just to give a general
view of the most interesting algorithms, we will reduce our analysis to three main
groups of techniques, as in the following list:

• Techniques based on fuzzy logic, aimed at taking care of the uncertainties and
problems by a mathematical framework that models uncertainty through fuzzi-
ness, and based on which membership function is assigned to each data or
information source.

• Techniques based on non-parametric approaches, such as neural networks, that
do not assign any model to the data structures but instead adapt themselves to
the different sources.

• Techniques based on knowledge-based approaches, which model the sources with
respect to a priori knowledge about their importance, accuracy, and effectiveness
for the proposed application.

Table 3.2 shows in compact form the main advantages and drawbacks of these three
techniques. We should stress that inputs to the fusion algorithms are both remotely
sensed imagery and GIS layers, but many of the following examples reduce the

Table 3.2 Taxonomy of fusion techniques

Technique Advantages Drawbacks

Fuzzy logic Uncertainty model
robustness

Careful tuning

Neural networks Non-parametric
Flexibility

Training required
Complexity

Knowledge-based Efficiency and accuracy
Knowledge exploitation

Many rules
Ad hoc solution
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latter to raster format. This is done in order to compare the two information sets
on the same spatial grid, usually defined by the spatial resolution of the remotely
sensed data. Although this is a wise choice, it is also a reductive one. The raster
and vector formats are suitable for different tasks and an algorithm needs to deal
with both of them if it aims at their exploitation.

3.4.2.1 Fuzzy-based framework retaining accuracy information

Fuzzy logic is a powerful means to deal with different data sources, and may
be adapted to combine GIS and remote sensing imagery or information. A first
example may be found in Benz et al. (2004), where a fuzzy membership function,
either chosen by default or user-defined, may be assigned to any information that is
gathered about a segment of the original image. In this way the inherent uncertainties
and problems in the different sources are mathematically introduced in a framework
where each quality of an image object is used to compute joint membership of
more complex or differently scaled elements of the scene. This approach is very
interesting, but needs to be carefully tuned in order to model the fuzzy functions for
each information source. Indeed, it allows tremendous flexibility, but also increases
the time required to get meaningful and satisfying results.

A second example is the research proposed in Metternicht (2001). The authors
evaluate the effects of changes in soil salinity, employing change detection tech-
niques whose results are reclassified using fuzzy rules that discriminate among
changes that are likely or unlikely to happen. The different degrees of likelihood of
each couple are precisely modelled, using a particular set of rules based on fuzzy
logic. The system is implemented into a GIS and uses for validation a number of
information layers independently introduced in the same system. By using these
rules, the procedure is able not only to define more precisely the change that has
happened but also to quantify its likelihood and its extent, so that it may be used
as input to further environmental models.

3.4.2.2 Non-parametric approaches

Other interesting approaches to data or information fusion are all non-parametric
approaches. Among them, neural networks are by far the most commonly used.
These networks do not need a model of the data source and may be tuned to
different inputs by a suitable training phase.

Neural networks are used in Teng and Fairbairn (2002) to recognize objects
that have been individuated in a high-resolution scene and assign them to one
of the possible classes. To this end, their geometrical properties (area, perimeter,
moments � � � ) are considered and compared to those of already known objects in
the same scene available in a GIS data layer. The advantage of neural networks
in this case is their ability to cope with inputs having very different ranges and
statistical properties. A very similar methodology is discussed in Rigol-Sanchez
et al. (2003), where artificial neural networks are used to exploit GIS and remotely
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sensed data. The GIS data are translated into raster information with the same
spatial resolution. The methodology proposed in the paper uses a feed-forward
backpropagation network to individuate locations of interest for gold extraction,
integrating information on land cover with knowledge of the slope and underground
structure of the soil.

Finally, an interesting solution to problems caused by the different horizontal and
positional accuracy of GIS and remotely sensed data is proposed in Mas (2004). Here
the boundaries of a known area, coming from GIS layers, are fuzzyfied using a low pass
filter. The application in this case is the monitoring of a tropical coastal area.

3.4.2.3 Knowledge-based approaches

Knowledge-based approaches, which are not inconsistent with fuzzy logic and are
often coupled with them, are a valid alternative to non-parametric approaches. They
require that parameters of the problem to solve or the analysis to perform be known
a priori. This knowledge is modelled and fed into the classification or combination
algorithm, with the precise aim of getting a particular result. In other words, while
non-parametric approaches are a general tool that adapts to each situation, knowledge-
based approaches are tailored to a given data structure and combination algorithm. The
efficiency is therefore higher, but there is less flexibility.

A good example in this respect is Cohen and Shoshany (2002), where a crop-
recognition system for the Mediterranean area was designed. The problem with
this particular area was connected with the high level of segmentation of the rural
area into different crops, so that high spatial variability was coupled with high
spectral variability. A knowledge-based approach to crop recognition, based on
multitemporal imagery (Landsat TM data translated into NDVI values) and rules
for split and merge and generalization steps, successfully provided accurate maps.
The approach exploited GIS layers, such as precipitation levels and soil types,
for defining the rules by which to cluster or subdivide a large number of classes
extracted using a fast unsupervised technique applied to an NDVI image sequence.

In a completely different application field, a similar approach was introduced
for climate and air quality planning in urban and regional areas (Fehrenbach et al.,
2001). In this paper, land-use classes, aggregated into areal types, and ventilation
situations were analysed to provide a classification of planning objectives. In other
words, planning objectives for climate planning were translated into rules, and
these rules were then reduced to a number of relationships between areal types and
ventilation conditions, using two spatial grids, one of 25 m for urban areas and one
of 100 m for regional analysis. The methodology was used to provide maps useful
to planners whose objectives might be to ‘improve ventilation’, ‘reduce the risks of
strong winds’, ‘reduce air pollution’ or ‘improve the heat load situation’.

A final note on knowledge-based approaches comes from the results shown in
Sader et al. (1995). In this paper a comparison among four different classification
algorithms was provided, with the aim of providing a forest wetland inventory.
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However, these algorithms were GIS- or remote sensing-based, and the only data
fusion step was due to the fact that the information in the GIS layers, to be classi-
fied using a knowledge-based approach, was extracted from remotely sensed data.
The comparison shows that there is no clear advantage in using knowledge-based
approaches. There are always optimized and supervised statistical classification algo-
rithms able to reach the same overall accuracy values. Additionally, this paper may
be used to understand why GIS–remote sensing data fusion (using knowledge-based
approaches or not) is useless if the information does not come from independent
sources.

3.5 Conclusions

The scheme of the complete framework integrating the solutions in Section 3.4 is
shown in Figure 3.2. As discussed above, it integrates the multiscale requirements
of a good GIS–remotely sensed data fusion practice and the use of information, i.e.
geometric or region primitives, for a more precise exploitation of the two sources.

Combination

KB KB KB
 Network

Model

 A priori
Information

Multi-scale

Figure 3.2 The general GIS–remote sensing fusion methodology proposed in this chapter
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3.5.1 Integration of remote sensing and GIS into a change
detection module

As an example of the system defined in a general way in the previous paragraphs,
we offer here a very general change detection routine, integrating GIS layers of
linear features into a change detection processing module. It should be noted that the
procedure is general in the sense that the algorithm is applicable to change detection
using remote sensing data only, and no requirements are made on the resolution of
the imagery used. Moreover, the algorithm is written to integrate line detection and
pixel-based change-detection techniques, and may be reduced to the one or the other
part without losing efficiency. However, we stress that, following the discussion in
section 3.2, it is easy to conclude that using both sources of information will be
more effective.

The methodology, shown in Figure 3.3, therefore builds (possibly) on the
results of a pixel- or even region-based change-detection algorithm, such as
those reviewed in Coppin et al. (2004). It works towards improvements of the
results obtained by using other features, and exemplifies this step by looking
at linear features, such as those considered in the street extraction problem.
In this procedure we propose to let the user choose whether he/she prefers to
analyse the scene towards the lens of the linear features extracted, or to jointly
consider the linear features and the classification or change maps. This module
may be useful for change analysis starting from an already available GIS layer,
feature extraction from remote sensing imagery, and change detection using clas-
sification and feature extraction routines in a joint effort for a more reliable
output.

While pixel- or segment-based change detection methods are well defined, a
change-detection algorithm made by linear and curvilinear feature comparison
requires the definition of a methodology to compare two sets of these features.
To this end, the comparison routine has been devised. It is devoted to deter-
mining the correspondences between linear features in two sets of line elements,
either extracted from two images acquired at different dates, or already avail-
able at one of the dates in a GIS layer. Assuming that linear and curvilinear
elements are in these sets, a very simple procedure for this comparison works as
follows:

1. For each segment from the first group, starting from its extremes we build a
box around it with transversal dimensions equal to � pixels (the parameter �
is chosen by the user).

2. Then, the routine computes the number of pixels of any segment of the second
group that fall into that box.

3. This allows us to compute association by using these values (if the above
mentioned percentage is higher than a given threshold).
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Figure 3.3 Block diagram of the feature-comparison and change-detection procedure

By this procedure it is possible to build a so-called correspondence matrix, in
which we could describe the common segments present in several extractions. In
this matrix, each extracted segment is associated with all the overlapping ones
(following the above-mentioned criteria) in any other set.

If there is a GIS or manually extracted road layer available, a quantitative evalua-
tion of the extracted dataset may be computed, considering two indexes (Wiedemann
et al., 1998; Wiedemann and Ebner, 2000), completeness and correctness. In order
to improve change detection, it is possible to exploit both the information from
the extracted features and those available as output of the change detection by the
classification step. The procedure requires a fusion algorithm at the feature level
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Figure 3.4 Flow diagram of the feature-comparison and change-detection procedure

between road segments extracted using imagery-dedicated routines and the land
cover classification maps/ GIS layers of the same area.

Change detection may therefore be improved locally by comparison of more
features, combined by the ‘extraction confidence level’ or the ‘classification



64 CH03 DATA FUSION RELATED TO GIS AND REMOTE SENSING

confidence’. For instance, for linear features that belong to road areas, the clas-
sification confidence for an area of the map surrounding an extracted element
is computed by considering the percentage of pixels of the ‘road’ class in the
neighbourhood of each extracted segment. Moreover, to take into account different
possible road widths, this value may be computed using different window widths.
The combination of the extraction and classification levels may therefore be used
to test all the possible road widths and choose for each segment the one with the
largest confidence value (Lisini et al., 2004). At the same time, change detection
classification may be improved by considering features extracted from the pre- and
post-event (or generally, multitemporal) datasets.

After the comparison routine, the detected changes in pre- and post-segment
datasets are recharacterized by considering the map of per-pixel changes, with
the same algorithm that allows the exploitation of classification maps for feature
extraction. This means that a change in the feature and a change in the maps are
combined, in order to improve the reliability of the final result. This is done by
using the feature change as a seed in the per-pixel change map and evaluating the
percentage of change pixels in the area of interest. If this value is above a user-
defined threshold, the change is approved; otherwise, it is rejected. The possible
processing paths originating from the use of the above-mentioned procedure are
depicted in detail in Figure 3.4.
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The importance of scale in
remote sensing and GIS and its
implications for data
integration

Peter M. Atkinson
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4.1 Introduction

An understanding of the effects of sampling upon acquired data is a prerequisite
for intelligent integration of remotely sensed imagery with other spatial data within
a geographical information system. The sampling framework, defined as the set of
all parameters that determine how data are acquired on a property of interest, has
important consequences for the nature of the values and, thus, the spatial variation
in the resultant variable. In particular, the sampling framework determines in part
the scales of spatial variation that are realized in the variable that is presented for
analysis (Moellering and Tobler, 1972; Atkinson and Tate, 2000). This is as true
for GIS vector data as it is for remotely sensed imagery and other raster datasets.
It follows that any attempts to integrate remotely sensed imagery with spatial data
within a GIS should include careful consideration of: (a) the sampling frameworks
used to acquire spatial data; (b) the scales of variation present in spatial data; and
(c) the consequences of these for combining the original spatial variables.

The objective of this chapter is to review the various component effects summa-
rized above to arm the researcher or GIS user with a conceptual framework with
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which to understand the consequences of attempting data integration and an aware-
ness of the possibilities for improving the methods used for integration. The focus
of this chapter is on handling remotely sensed images, in combination with GIS
vector and raster data, reflecting the interests of the author. The books edited by
Quattrochi and Goodchild (1997) and Tate and Atkinson (2001) provide a range
of examples of the importance of scale in remote sensing and GIS, in a broader
context.

Section 4.2 provides an introduction to the concept of scale of measurement.
Section 4.3 introduces the concept of scale of spatial variation. Section 4.4 then
considers some of the issues introduced in Sections 4.2 and 4.3 within the context
of GIS data integration. Section 4.5 provides a brief conclusion.

4.2 Data models and scales of measurement

It is important when considering issues of scale to distinguish between the scales
of measurement and the scales of spatial variation that are observed in data. This
section deals with scales of measurement.

4.2.1 Raster imagery

4.2.1.1 Raster imagery and the RF model

A remotely sensed image is an example of data acquired in the raster data model
(i.e. an image, see Figure 4.1). The raster data model is comprised of several
non-overlapping areal units called pixels, arranged on a regular grid (Burrough
and McDonnell, 1998). The sampling framework of an image is relatively easy to
conceptualize. One can imagine a mesh being placed over a continuously varying
space and all variation within each pixel being averaged out to produce a set of
values, one per pixel. In this sampling process, much variation is lost. This sampling
process is described in more detail below. The important point to make here is
that the sampling framework of a remotely sensed image is fixed prior to data
acquisition. For this reason, the pixels bear very little or no relation to the properties
of the scene. Note that in some circumstances it may be possible to vary the pixel
size locally (Csillag et al., 1996).

The raster data model can be used to describe continuous variation (in either
continuous or categorical variables) or objects. In the former case, the space that the
image covers is commonly represented as a random function (RF). In an RF each
observation is modelled as a draw from a cumulative distribution function (CDF)
and each CDF is conditioned on others (e.g. neighbours) to account for dependence
between observations. Commonly, a variogram or spatial co-variance function is
chosen as a suitable parametric model to define the spatial dependence between
neighbours (Journel and Huijbregts, 1978). An example variogram is shown in
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Figure 4.1 The raster and vector data models

Figure 4.2. It plots semivariance (a measure of dissimilarity) against lag h (the vector
distance and direction between a pair of observations, i.e. the separation). The form
of variogram shown in Figure 4.2 is typical of variation encountered in remotely
sensed images: as h increases, the dissimilarity increases either asymptotically
towards, or reaching, a maximum.

In the latter case, an object-based view of the world replaces the RF: pixels are
conjoined into larger agglomerations of pixels to represent objects that are perceived
to exist in reality (e.g. house, road, forest stand). The raster data model is most
naturally combined with the RF model, primarily because the pixel locations bear
no relation to (i.e. are not conditional upon) the actual scene objects.
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Figure 4.2 An example of a typical experimental variogram
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4.2.1.2 Scales of measurement in remotely sensed imagery

Remotely sensed images are acquired through a sampling framework, as described
briefly above. Conceptually, it is useful to distinguish between the scene of interest,
the sensor and the atmosphere that lies between them. Of particular use is the
definition of four models: the scene model, the atmosphere model, the sensor
model and the image model (Strahler et al., 1986; Curran et al., 1998). The image
that is acquired is a function of these three other components. In particular, light
that is reflected or emitted from the Earth’s surface (i.e. scene) may be affected
by the atmosphere (scattered and attenuated) before it reaches the sensor. The
sensor design then determines how that altered light is sampled, both spectrally and
spatially. For example, the sensor design determines the number and position of the
wavebands that are recorded from within the electromagnetic spectrum. A common
set of wavebands (e.g. for fine spatial resolution sensors such as IKONOS and
Quickbird) is the blue (0�45–0�52 �m), green (0�52–0�6 �m), red (0�63–0�69 �m)
and near-infrared (0�76–0�9 �m) wavebands (Aplin et al., 1997). Of more interest,
given the present context, is the spatial sampling afforded by the sensor design.
Sensors operate physically in several ways (e.g. push-broom, side scanning) but the
consequence of that operation in general terms is the same – an image.

In remote sensing, the term ‘spatial resolution’ is used interchangeably with ‘pixel
size’. However, there are some differences and to set them out we need to introduce
a new term borrowed from geostatistics – the support (Journel and Huijbregts,
1978). The support is the size, geometry and orientation of the space over which
an observation is defined. In remote sensing, the support size is determined by the
instantaneous field of view (IFOV) and the flying height of the sensor platform.
The shape of the support is not square, but is generally centre-weighted due to the
point-spread function (PSF) of the sensor. The exact shape and the extent of centre-
weighting are determined by the sensor specification. Importantly, the observations
in a remotely sensed image generally overlap due to the PSF (Manslow and Nixon,
2002) (Figure 4.3).

Given the above definition of a remotely sensed image as a set of overlapping
observations, it is possible to define the spatial resolution and pixel more precisely.
The pixel is simply the cell within an output device to which an observation or
value within an image is assigned. So, whereas the observations overlap, pixels
abut (Figure 4.3). The spatial resolution is a function of both the support and the
sampling density. Thus, if observations were obtained more sparsely, such that
they did not cover the space of interest, the spatial resolution would decrease, even
though the support would remain the same. In remote sensing, the pixel size and
spatial resolution are often approximately the same because the pixel size determines
the sampling grid spacing.

The above view of a remotely sensed image as a sampled version of the atmo-
spherically altered signal from the scene is important because it provides a concep-
tual framework with which to understand scale. All data on the environment are
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Figure 4.3 Illustration of the centre-weighted supports of remotely sensed image obser-
vations overlapping spatially

acquired through some sampling framework, such that the data are a function of
both the property of interest (in this case the scene) and the sampling framework
(as determined by the sensor characteristics) (Figures 4.3, 4.4). For a remotely
sensed image, the size of support, approximated by the pixel size, is the most
important parameter of the sampling framework (Atkinson and Tate, 2000). The
support can be thought of as representing a primary scale of measurement, which
may be conceived of as a filter on reality (Figure 4.3).

Reality

Sampling
framework

Data

Figure 4.4 Spatial data seen as a function of some underlying reality and the spatial
sampling framework
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Importantly, the scales of spatial variation that are captured in the data are a
function of the scales of spatial variation in the property of interest defined on a
point support (i.e. in reality) and the support (note that relative to the above model
we now neglect the effect of the atmosphere in order to simplify the exposition).
This statement presupposes that we could measure on a point support, which we
cannot, but the concept is important: an external reality is defined such that the
scales of spatial variation detectable in observed data are a function of those in
reality filtered by a given sampling framework.

If the support is varied, then the scales of spatial variation detectable in the data
will change. If the support is reduced in size, then more (fine-scale) variation will
be revealed. If the support is increased, then some variation will be lost (leaving a
greater proportion of coarse-scale variation). The important point is that if data are
to be combined within a GIS, then we should have a good idea (i.e. a model) of
the effect of the sampling framework and the support on the datasets that are to be
integrated together.

4.2.2 Vector data

4.2.2.1 Vector data and the object-based model

The vector data model is fundamentally different from the raster data model in
several ways. First, the observations in the vector data model are comprised of
points, i.e. x = �x� y� location in a Cartesian coordinate system. These points are
usually placed so as to represent objects in the scene of interest. Point objects
are represented with a single point, lines with multiple points and area objects
with a sequence of multiple points in which the first and last point are the same
(Figure 4.1). Generally, the points are placed so as to define the border or geometry
of the objects. The objects, once represented, can be attributed with values of a
particular variable (e.g. land use).

Clearly, a fundamental difference between the raster and vector data models is
that in the raster data model, the pixels bear no relation to the scene, whereas in the
vector data model, the point locations represent the objects in the scene. For this
reason, the vector data model is most commonly associated with the object-based
view of the world. It is very difficult to represent continuous spatial variation with
the vector data model because the objects are depicted with zero variation within
them.

4.2.2.2 Scales of measurement

It may seem at first that the sampling principles as applied to raster imagery do
not apply to the vector data model; however, the principles are entirely general
and apply equally to the vector data model. The difference is that the space being
sampled is no longer a continuous Euclidean space, but the space defined by the
boundary (geometry) of the object. Sampling more densely (e.g. digitizing more
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frequently when representing, for example, a railway line) reveals greater variation
in the curvature of that feature. Sampling less densely provides a more generalized
representation. The issue of line and feature generalization (i.e. how to coarsen the
scale of representation in such a way as to produce a cartographically consistent
map) has been the subject of much research in GIS (e.g. Ware and Jones, 1998).

A rather more complex problem is the so-called modifiable areal unit problem
(MAUP) associated with census and similar datasets (Openshaw, 1984; Amrhein
and Wong, 1996). For census data, not only does the scale of measurement vary
(the aggregation problem), but also the actual realization of a particular sampling
model (with fixed parameters such as size of support) can have large effects on
the observed data. This effect is referred to as the zonation problem (Martin,
1996). In addition, and with serious consequences for the ability to apply statistical
procedures, the actual units vary from place to place in their size, geometry and
orientation (Atkinson and Martin, 1999).

4.3 Scales of spatial variation

Having considered scales of measurement in the previous section, the goal in this
section is to describe quantitatively the scales of spatial variation present in data.
The focus in this section is on the raster data model and random function view of
the world.

4.3.1 Spatial variation in raster data

It should be apparent from the preceding sections that the scales of spatial variation
that are detectable in data are a function of the sampling framework and those
present in reality. The question is, how should one characterize the scales of spatial
variation present in data? To answer this question, it is necessary to define what is
meant by ‘scales of spatial variation’.

4.3.1.1 Characterizing scales of spatial variation

Using the object-based model one can imagine several discs placed on a background
(such discs might represent tree crowns in a remotely sensed scene). Large discs
would represent a large-scale of spatial variation relative to small discs. Adopting
the continuous field model of spatial variation, imagine two scenarios involving
variation in the biomass of vegetation: (a) a tropical rainforest in which the spatial
variation in biomass is clumped producing a rough texture; and (b) a field of pasture
in which the smoothly varying underlying soil patterns result in a smooth texture in
biomass. In (a) the variation is fine-scale or high-frequency, and in (b) the variation
is coarse-scale or low-frequency. These loose definitions help to conceptualize the
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meaning of ‘scales of spatial variation’, but do not provide a quantitative means to
measure them.

The variogram, the central tool of geostatistics, is one of several functions that
may be used to characterize the scales of spatial variation present in spatial data
(Goovaerts, 1997; Atkinson, 1999; Chilès and Delfiner, 1999). Other approaches
such as wavelets are also common (Mallat, 1989; Chen and Blong, 2003). The
variogram is particularly suited to raster imagery and the RF model as described
above, but equivalent functions can be defined for vector data.

The experimental or sample variogram is a plot of several empirical values
of semivariance against several discrete lags (Figure 4.2). The experimental vari-
ogram, �̂�h�, can be estimated from p�h� paired observations, z�x��� z�x� + h���=
1� 2� 	 	 	 p�h� using:

�̂�h� = 1

2p�h�

p�h�∑
�=1


z�x�� − z�x� + h��2 (4.1)

To use the variogram in most geostatistical procedures, it is necessary to fit a
mathematical model to the empirical values. There are certain rules governing
the choice of model (models must be ‘authorized’) and its fitting that need not
concern us here (see McBratney and Webster, 1986). Gstat is an easy-to-use soft-
ware package that allows variogram estimation and model fitting (Pebesma and
Wesseling, 1998).

Each permissible model is defined by several parameters. Most models are tran-
sitive; they reach a maximum value of semivariance (the sill, c) at a specific lag
(the range, a). Some models are unbounded; the semivariance increases indefinitely
with lag. For transitive models the range defines the limit to spatial autocorrela-
tion; at lags less than the range values they are correlated, but beyond it they are
expected to be independent. In this sense, the range defines a maximum scale of
spatial variation in the data. The form of the fitted variogram model defines the
entire range of scales of spatial variation in the data.

Some of the most commonly used authorized variogram models are the expo-
nential and spherical models. The exponential model is given by:

��h� = c ·
[

1 − exp
(

−h

d

)]
� (4.2)

where d is the non-linear distance parameter. The exponential model reaches the
sill asymptotically.

The spherical model is given by:

��h� =
{

c · �1�5 h
a
− 0�5

(
h
a

)3
 if h ≤ a

c if h > a
(4.3)
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4.3.1.2 Characterizing error

Most models fitted to experimental variograms include a further model called the
nugget effect model, which is given by:

��h� =
{

0 for h = 0
c0 for h > 0

(4.4)

where c0 is the nugget variance or sill of the nugget effect model. The nugget effect
is essentially a completely flat model that takes the same value of semivariance,
independent of lag, with the exception of �h� = 0, which must always take the
value of zero. Adding the nugget model means essentially that the semivariance is
increased at all lags and that the intercept of the model with the ordinate is positive
and equal to c0.

The nugget variance is due to (a) micro-scale variation that has not been accounted
for by the sampling and (b) measurement error. For remotely sensed imagery, the
nugget variance is sometimes used to represent measurement error (Curran and
Dungan, 1989; Atkinson et al., 1996).

4.3.1.3 Upscaling and downscaling

‘Upscaling’ refers to an increase in the size of the support, whereas ‘downscaling’
refers to a decrease in the size of the support (Figure 4.5). It is possible to upscale
a remotely sensed image readily through weighted averaging. One possible method
is to simply average the existing pixels to create larger ones. This simple operation
may be adequate for some purposes, but it is not a precise representation of a real
remotely sensed image at the larger pixel size because it assumes a square wave
response, which (from above) we know to be inappropriate, due to the effects of
the PSF (e.g. Figure 4.3). Downscaling is more difficult but not impossible, as
described in the example on super-resolution mapping later in this chapter.

Adopting the RF model in a geostatistical setting, it is possible to define a model
of the effect of the support on spatial variation detectable in a remotely sensed
image. More specifically, the geostatistical operation of regularization models

Downscaling

Fine spatial resolution

Upscaling

Coarse spatial resolution

Figure 4.5 Upscaling and downscaling
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the effect of the support on the variogram that characterizes the spatial variation
(including the scales of spatial variation) in an image. The model is defined by
Clark (1977) and Journel and Huijbregts (1978) as:

���h� = �̄��� �h� − �̄��� �� (4.5)

where �̄��� �h� represents the integral punctual semivariance between two pixels
of size v whose centroids are separated by h, and �̄��� �� represents the integral
punctual semivariance within a pixel of size � (i.e. the within-block variance).

The spatial variation observed in data (i.e. the variation between data) is equal
to the spatial variation in the unobserved underlying property of interest minus the
spatial variation that is averaged out or lost within the support. Figure 4.6 shows
an example in which a punctual or point variogram model has been estimated by
comparing the regularized or convolved semivariance values obtained from the
punctual model, using equation 4.5, with the experimental semivariance values
obtained on the observation support. The figure shows that the same punctual model,
once estimated, can be used to estimate the variogram for any support larger than
that of the original data (Jupp et al., 1998, 1999). This model is important because it
embodies some of the fundamental sampling concepts introduced in earlier sections
(see Figure 4.4).
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Figure 4.6 Regularization of the variogram. The upper solid curve represents the punctual
or point support variogram (which may not exist in practice). The dotted line represents the
same punctual variogram convolved or regularized to the same support as the observations,
thus matching the experimental variogram (triangle symbols). The lower two dashed lines
represent convolutions (regularizations) of the punctual model to supports that are larger
than the original support. DN, digital number
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4.3.2 Scales of variation in vector data

The principles outlined above in relation to the RF model also apply to the vector
data model and the object-based view of the world. In the attribute sense, vector
data can be seen as providing a realization of a categorical RF model for every point
in a continuous space. Then the above principles apply directly. For example, it
would be possible to discretize the vector data layer and estimate the experimental
variogram, based on the discretized grid.

In the geometric sense of defining the boundaries of objects, the above principles
apply less directly. It is true that the greater the sampling density along a line, the
less generalized the line represented by the series of point data will be (given that
sufficient detail exists in the original property being measured – for cartographic
map data which are already an abstraction of reality, this may not be the case).
However, the variogram is unlikely to be used to characterize spatial variation
along a line. More commonly, object-based statistics, simple examples of which
are compactness, roundness and convexity, have been applied to determine the
degree of curvature in boundaries. The fractal model has been particularly useful
in describing the scales of spatial variation (or, indeed, scale invariance, where this
holds true) present in lines and areas whose dimension lies between some integer
value.

Attempts to characterize the scales of spatial variation in census data
(with the associated MAUP) have been limited (Atkinson and Martin, 1999;
Fotheringham et al., 2000). This is largely because the sampling imposed by the
variable units (supports) limits the application of spatial statistics. Simple statistics,
such as Moran’s I and Geary’s c, have been applied to census data to measure
autocorrelation.

4.3.3 Processes in the environment

4.3.3.1 Processes and forms

An important distinction to make in our conceptual model is between form and
process. Observations of the real world that can be stored as data ready for analysis
(e.g. within a GIS) relate information on form (i.e. spatial variation or pattern).
However, spatial forms in the real world are not static; they are constantly changing.
The rules by which such changes occur are referred to as ‘processes’. In the general
sense, it is not possible to measure processes and so they must be inferred by
analysing changes that occur in spatial forms.

Processes are the primary object of interest in science; knowledge of process
encapsulates understanding and the consequent ability to explain. Therefore,
although processes are unlikely to be the primary object of interest in the context
of remote sensing and GIS data integration, they deserve attention.
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4.3.3.2 Process modelling

An important and emerging field of investigation is spatially distributed dynamic
modelling (SDDM), also referred to as GeoDynamics (Atkinson et al., 2005). In
such spatially distributed models, an area of interest is commonly represented as a
grid or mesh, and the data within the cells so defined are allowed to vary through
time as a function of some rules that code the processes of interest. Such models have
been applied extensively within fields such as riverine flooding, geomorphology,
landscape evolution, landscape ecology and infectious disease transmission amongst
others (for examples, see Atkinson et al., 2005). The objective of such modelling
varies, but can include: (a) increasing understanding of the system; (b) forecasting,
often in real-time using data assimilation techniques; and (c) evaluation of what-if
scenarios. The latter objective includes evaluation of the behaviour and response
of the system under future possible scenarios (e.g. climate change) and alternative
management and planning scenarios. This ability to evaluate the system independent
of new measurement should make clear why knowledge of process is so important
and should not be overlooked, even in a book focused on form.

4.3.3.3 Scales of representation

Processes are represented in a model (e.g. SDDM) as a series of usually rather
crude rules, which can be written either as mathematical expressions or in computer
code. These rules are abstractions of the real processes (which often lie in the
realm of physics). Further, the abstraction often occurs at a particular set of spatial
and temporal scales, as determined by the spatial and temporal sampling used to
acquire the data on which the rules have been calibrated and validated. A fair
understanding of this abstraction is important because it determines the level to
which objective (a) above is feasible – often it is not. Importantly, the processes
underlying the measurable forms of interest will be defined at particular spatial
and temporal scales. Whether these scales are represented adequately in a process
model as described above is an important question.

4.4 Remote sensing and GIS data integration

In this section, several examples are given of the integration of datasets within a
GIS. Now that the concepts of scales of measurement and scales of spatial variation
have been introduced, the importance of such scales for data integration can be
highlighted. Two operations are used as vehicles to drive the discussion: GIS overlay
(and regression) and remote sensing classification.

4.4.1 Overlay and regression

Common objectives in GIS are site suitability and habitat suitability mapping. These
often centre on the overlay operation applied to several input data layers, which
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may be provided in a variety of formats, including both the raster and vector data
models. For example, selecting a suitable habitat for a rare species of bird may
require image data on land cover (e.g. woodland density), but also vector data
representations of features such as hedgerows, rivers and motorways.

Statistical regression, like overlay, requires data integration and within a GIS
may require combination of data from quite disparate sources. In regression, the
objective is to predict one (target) variable based on other correlated explanatory
variable(s).

It should be clear from other chapters of this book that overlay is a rather crude
procedure in GIS. It assumes expert knowledge that may not exist, or may be
poorly founded, and does not involve any statistical fitting to empirical data. As a
result, the output from an overlay analysis may be arbitrary and difficult to defend.
Where data on the desired variable exist (e.g. data on suitable habitats), it is often
preferable to fit a statistical model (e.g. multiple regression) and use the coefficients
of the fitted model to predict suitability.

4.4.1.1 Scales of measurement

Whether data are to be combined using overlay or regression, the same concerns
over the scales of measurement arise. Consider, first, the simple case where two
raster data layers are to be combined. An example would be the integration of
a remotely sensed image with a digital elevation model (Janssen et al., 1990;
Janssen and Molenaar, 1995). These data layers may have different scales of
measurement (e.g. spatial resolutions). A question then arises over whether it
is necessary to change the spatial resolution of one dataset in order to match
that of the other. A common choice would be to degrade the finer spatial reso-
lution to match the coarser one. Whether or not this is a sensible strategy
really depends on the scale(s) of spatial variation in the underlying property,
and hence the resultant variable. Specifically, the investigator should ask whether
the resultant spatial resolution is adequate to resolve the spatial variation of
interest.

In another circumstance, the two raster datasets to be combined may be provided
with the same spatial resolution. However, it does not follow automatically that the
correlation between the two datasets will be a maximum when the support on which
they are represented is the same. Consider the situation in which the explanatory
variable is comprised of a source of variation of interest plus some other source of
variation, which may be considered as spatially correlated noise that is uncorrelated
with the target variable. If the scales (frequencies) of the two sources of spatial
variation are different, then it will be possible to filter the explanatory variable to
actually increase the correlation with the target variable (Goovaerts, 1997). This
amounts to changing the scale of measurement such as to focus on the required
variation.
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4.4.1.2 Transformation

Often it is necessary to transform data into a compatible coordinate system and
data model to facilitate comparison with other data layers. One of the key problems
in GIS is that when data are transformed, the transformation procedure imparts a
scale of measurement on the resulting data that is an artefact of the algorithm and
not the original sampling incurred.

A common operation employed in transforming point data to the raster data
model is interpolation. Many algorithms exist for spatial interpolation, including the
widely applied inverse distance weighting (IDW) interpolation and the geostatistical
technique of kriging. All common algorithms are smoothing operators, because
the predicted value is simply a weighted average of neighbouring data. Thus,
some variance is lost as a function of the interpolation procedure and the resulting
predicted variable is smoother than the original. This effect can be particularly severe
for algorithms such as IDW. Investigators are forced to apply such transformations
because no alternative exists; however, they are often unaware of the consequences
of such action.

In the above example, the smoothing imparted by the interpolation procedure
amounts to an increase in the support of the predicted variable above that of the
original variable. In fact, the support of the new variable is precisely equal to
the original support convolved with the support defined by the weighted set of
neighbouring points used in the interpolation, which approximates a sample of a
distance-decay function of some description. This distance-decay function spreads
out the support of the prediction beyond the support of the original data (Atkinson
and Kelly, 1997; Atkinson and Tate, 2000). Users of interpolation procedures should
be aware of the scale-related effects of the algorithms that they are applying.

In GIS operations such as regression, smoothing can lead to undesirable effects.
For example, suppose that only the explanatory x variable has been smoothed
and the predicted y variable has not been smoothed. Then the scatterplot between
the two variables will be altered such that a best-fit line through the scatter will
have an increased slope. Such a relation would not be applicable to other datasets
that had not been smoothed. This is a key problem in remote sensing–GIS data
integration.

The combination of raster and vector data through overlay or regression often
involves the process of converting one form of data model to another. A common
choice is to convert vector data to the raster data model (rasterization). This process
of converting from one data model to another may involve adding a scale of
measurement, as discussed above.

4.4.1.3 Geometric error

It is well known that geometric error has a large effect on procedures in a GIS
that use multiple data layers. Consider the situation in which two vector data layers



4.4 REMOTE SENSING AND GIS DATA INTEGRATION 83

are to be combined. It is well known that geometric imprecision will lead to sliver
polygons in the resultant vector output map.

It is interesting in the present context to consider the effect that generalization in
the observed vector data has on the combined output. Suppose that one dataset is
more generalized than the other. Then, one would expect sliver polygons to result
from the imposed scale of measurement in the one dataset. The effect is similar to
that of geometric error, but with a different spatial character. If both vector data
layers have been obtained with the same levels of generalization, then the problem
may diminish, but it may not vanish. There is still likely to be a component of error
due to the spatial resolution or sampling density with which the lines have been
represented.

The problems and issues relating to geometric error are even more important
when the objective is change detection and monitoring (Westmoreland and Stow,
1992). Apparent ‘changes’ appear at the boundaries of objects simply because the
objects have not been located precisely in either or all datasets. Such slivers at the
boundaries of objects can have a severe effect on statistics such as the mean change
vector (‘vector’ here meaning the change from one point to another in feature
space).

A key question is, how accurate does the registration need to be? Well, let
us quantify the geometric error using the standard deviation s, within which
68% of deviations are expected to lie. The required standard deviation will
depend, in large part, on the scale of spatial variation in the data layers being
used within the procedure. Take the example of overlay. If the objects of
interest (assuming a scene model comprised of objects) were, say 300 m on
a side (e.g. agricultural fields), then the s that may be tolerated would be
larger than if the objects were around 10 m on a side (e.g. residential houses).
These basic principles are similar to those that have been articulated for the
scale of measurement (a smaller pixel being required to resolve smaller objects)
(Woodcock and Strahler, 1987; Townshend and Justice, 1988; Atkinson and
Curran, 1997).

The object-based view is useful to convey principles, but these principles apply
also to continua. If the scale of spatial variation is fine (as characterized by the
variogram range and model type), then a smaller s will be required. For example, if
the investigator is interested in variation in, say, leaf area index (LAI) between tree
crowns in a forest stand with a predominant scale of spatial variation (e.g. variogram
range) caused by tree crowns, then the pixel size and geometric registration error
will need to be much smaller than the variogram range.

It is interesting to note that the ability to perform a geometric rectification is often
dependent on sufficient spatial variation in the image or dataset to be registered.
Thus, registration precision is likely to be greater where the features of interest are
sufficiently well resolved. It is for this reason that standard deviations of around
one pixel or less are commonly reported for remotely sensed images, independent
of the spatial resolution.
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4.4.2 Remote sensing classification of land cover

Classification of land cover using remotely sensed imagery is commonly pixel-
based (Tso and Mather, 2001). This means that each pixel is classified based on
some algorithm, independently of its neighbours. Given that neighbouring pixels
in a remotely sensed image are rarely independent, this does not seem a sensible
strategy (Cushnie, 1987). There are many alternative algorithms that in one way
or another make use of the correlation between neighbouring pixels to increase the
precision with which land cover can be classified. A good example is the class
of algorithms referred to as Markov Random Field (MRF) models (Atkinson and
Lewis, 2000). However, such algorithms assume little or no prior knowledge of the
scene; if some knowledge were available, then we should be able to increase the
precision of prediction further. The approach described here is called per-parcel or
per-field classification (Ortiz et al., 1997; Aplin et al., 1999) and was first proposed
almost 20 years ago (Mason et al., 1988).

4.4.2.1 Per-field classification

One of the problems with per-pixel classification is that, as described above, the
pixel locations bear little or no relation to the scene. Per-parcel classification invokes
the idea of a scene model in which the area of interest is comprised of objects
(Johnsson, 1994; Mattikalli et al., 1995). The vector model provides a bridge
between the image and the object-based view of reality, which is often appropriate
for scenes that have been developed by humans. A prominent example of the
integration of remote sensing and GIS vector data for classification of land cover is
the CLEVER mapping approach used to map land cover in the UK in 2000 (Smith
and Fuller, 2001; Fuller et al., 2002).

Per-parcel classification presupposes that the scene of interest can be represented
as a series of objects arranged either (a) on a background (e.g. residential urban
landscape in the UK) or (b) as a mosaic (e.g. agricultural landscape in the UK)
(Strahler et al., 1986). These models fit conceptually with our interpretation of urban
and agricultural landscapes (the human brain has evolved to recognize functional
objects; think of houses, roads, train stations) and so it is commonly these objects
that we wish to label through remote sensing classification. Crucially, vector data
help the investigator to separate the within-parcel variation (unwanted noise given
the above) from the between-parcel variation (signal). Without such data, such
separation is difficult to achieve. It is surprising, then, that per-parcel classification
is not more widely adopted.

Integrating raster and vector data sources is replete with problems, most notably
imprecision in geometric registration, as discussed above. Here, it is assumed that
both datasets are perfectly registered in the same coordinate system. It is possible
to label each pixel with a polygon ID using a GIS. Once each pixel is so labelled,
it can be treated as part of a group, a member of a given parcel. Then, per-parcel
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classification can proceed in one of three basic ways: (a) averaging each pixel
vector (remember, each pixel represents a set of wavebands) per-parcel prior to
classification of each mean vector; (b) classification of the entire multivariate,
multiwaveband dataset per-parcel; or (c) post-processing of the classified pixels
per-parcel (e.g. taking the modal land cover class per-parcel). Option (c) is the
simplest and most common approach (e.g. Aplin et al., 1999).

Per-parcel classification imparts benefits to the user beyond simple averaging
over desired objects. For example, the vector data allow texture measures (e.g. the
variogram) to be estimated per-object, removing the between-parcel variation that
so often reduces the utility of such texture measures in remote sensing (Berberoglu
et al., 2000; Lloyd et al., 2006). Further, it is possible to undertake a more sophis-
ticated analysis of the distribution of classes allocated per-parcel [approach (c)].
For example, where the modal class corresponds to a large proportion (e.g. 95%
of a parcel), one may be confident that the correct class has been allocated. Where
the modal class is 45% and the second most common class represents 40%, then
uncertainty is clearly greater. One interpretation of this particular situation is that
there may be a missing line which should divide the parcel into two parts (such
missing lines are common in agricultural scenarios, where farmers rotate crops,
etc.) (Aplin and Atkinson, 2004). In these circumstances, the missing line can be
added and incorrect allocation of the single class to the whole parcel avoided.

In per-field classification, vector data defining the objects of interest in the scene
are combined with image data to allocate a single class to each object. The vector
data are a representation or abstraction of the scene; they are a function of the
scales of measurement (generalization) described in section 4.2. For this reason, the
vector data constrain the outcome of the classification; specifically the geometry
of each object being classified. In a sense, the vector data are taken as correct
and the remotely sensed imagery is used to label these correct objects. Thus, the
goodness of the classification very much depends on the level of generalization in
the original vector data and, in particular, whether this level of generalization is
appropriate for the classification task. Too generalized a representation may lead to
misclassification of pixels near to the object boundaries.

4.4.2.2 Soft classification and subpixel allocation

In the preceding section it was assumed that classification involved hard allocation,
in the sense that a single class was allocated to each pixel (or parcel). However, in
remotely sensed images of scenes that are adequately conceptualized as comprising
a set of objects, many pixels actually represent a mixture of classes; in particular,
mixing occurs where pixels straddle the boundaries between two or more objects
of different classes (Cracknell, 1998). In these circumstances, it makes little sense
to allocate a single class to a pixel.

For the above reasons, soft classification approaches have become popular in
remote sensing, in which a single pixel is allocated to multiple classes in proportion
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to the area covered by each class within the pixel (Foody, 1996). In many cases,
the scale of measurement (pixel size) in the remotely sensed image is much finer
than the size of the objects of interest (e.g. Landsat Thematic Mapper imagery with
a spatial resolution of 30 m in relation to agricultural parcels of around 300 m on a
side). In these circumstances, hard classification followed by subsequent per-parcel
allocation through selection of the modal class may be adequate. However, in other
cases the spatial resolution may be such that the pixel size interacts strongly with the
objects, leading to much mixing within pixels [e.g. Système Pour l’Observation de
la Terre (SPOT) multispectral imagery with a spatial resolution of 20 m in relation
to a residential scene]. In these circumstances, per-parcel classification based on
hard classification of pixels would be of limited use.

Aplin and Atkinson (2001) developed a procedure to deal with the above problem.
Specifically, soft classification was used to allocate each pixel in a remotely sensed
scene to multiple classes. Then, each class proportion within each pixel was allo-
cated to one of the parcels that the pixel covered. This allocation was adjusted
according to the proportion of the parcel that was covered (largest class proportions
being allocated to the largest parcel proportions) (Figure 4.7). In this way, it was
possible to gain the benefits of per-parcel classification even where the objects of
interest were not much larger than a pixel. The utility of this procedure clearly
depends on: (a) the scale of measurement relative to the underlying scale of vari-
ation (in this case, the size of the objects); and (b) accurate geometric registration
between the vector and raster datasets.

4.4.2.3 A note on downscaling and super-resolution mapping

In recent years, several groups of researchers have developed techniques for subpixel
or super-resolution mapping (Atkinson, 1997, 2004; Tatem et al., 2001), in which
the land cover proportions output from a soft classification are processed further
to map the land cover within individual pixels. This amounts to downscaling –
producing a land cover classification at a spatial resolution finer than that of the
original imagery. Such a procedure depends on constrained optimization; specif-
ically, the goal is to maximize the correlation between neighbouring subpixels
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Figure 4.7 Calculating modal land cover per polygon by (a) assigning and (b) grouping
sub-pixel land cover proportions
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(pixels within pixels), while at the same time maintaining the land cover proportions
predicted at the original pixel level. Essentially, the goal is spatial clustering. Tatem
et al. (2001) developed a Hopfield neural network to achieve this optimization
efficiently.

The HNN approach was extended subsequently to match the spatial correlation
(and, thus, match also the scales of spatial variation) in some training image (rather
than maximizing the spatial correlation) using a similar optimization algorithm. This
pattern-matching algorithm allowed super-resolution mapping of objects that were
smaller than a pixel. The spatial correlation was represented using the variogram
(Tatem et al., 2002), although the two-point histogram (Deutsch and Journel, 1998;
Atkinson, 2004) is a preferable alternative.

This section has concentrated on land cover classification, primarily because this
book is focused on raster and vector data integration. If the scene is conceptualized
as comprising objects (requiring a vector data model), then labelling those objects
is an appropriate task. Nevertheless, there are circumstances in which the objective
may be to predict continua, and knowledge of (data on) objects in the form of
vector data can increase the precision of prediction through data integration within
a GIS. For example, geostatistical models are not suited for application to scenes
that comprise objects. The ability to separate an image into component parts allows
the RF model of geostatistics to be applied appropriately to within-class or within-
object variation. This amounts to a non-stationary geostatistical model defined using
vectors.

4.5 Conclusion

The key conclusions of this chapter can be summarized as follows:

• The scales of spatial variation in observed data are a function of the underlying
spatial variation in the property of interest and spatial sampling processes.

• Models of the effect of the sampling framework upon observed spatial variation
allow upscaling and downscaling of both observed data and models characterizing
the spatial variation.

• The effects of sampling processes invoked through measurement are propagated
when data are integrated within a GIS; thus, it is important to understand such
processes if data integration is to be undertaken appropriately.

• Scales of measurement in vector data may introduce an effect through data
integration that is similar, but spatially different, to the effect of geometric error.

• Data transformation often has the effect of introducing a new scale of measure-
ment that is added to the scales of measurement inherent in the original sampling.
Thus, particular care is needed where data are transformed prior to integration.
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5.1 Introduction

Population growth, combined with technology advancement, has led to continued
urbanization at the global scale. To assess the social, economic and environmental
impact of this phenomenon, an understanding of the urban patterns and processes
is necessary. Answers to questions on how cities are spatially organized, where and
when developments happen, and how different processes lead to different patterns
can significantly enrich our understanding of the urban system and forward scien-
tific planning. To this end, detailed spatial and temporal knowledge of an urban
area is essential, including information about the area’s morphology, infrastructure,
land use pattern and population distribution and the drivers behind its growth. The
potential of satellite remote sensing to provide such information has been widely
discussed in the literature (Batty and Howes, 2001), especially with the recent avail-
ability of very high spatial resolution images, such as IKONOS and QUICKBIRD
(Donnay et al., 2001). For clarification, the study of urban morphology is concerned
with how a city grows spatially and is directly linked to the architectural domain.
(Urban) pattern more generally refers to the spatial heterogeneity of cities in the
context of a variety of issues characterizing urban environments (social, economic,
etc.). Processes describe the evolution and change of urban areas. Observed urban
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patterns and morphological characteristics are an outcome of the processes that
formed them. Thus, both are directly linked and usually studied in conjunction.

While satellite remote sensing brings excitement to the field of urban analysis,
challenges remain. One is that remote sensing records what is on the land surface,
i.e. land cover information, whereas in urban analysis, it is land use that is of primary
interest. Land use refers to the purpose served by a land. For example, a vegetated
area can be of recreational land use if it is in an urban park, or of residential land
use if it is the playground in a residential area. Remote sensing provides information
at the land cover level. How to link land cover to land use remains a challenge.
This challenge is especially prominent in urban areas because of the spatial and
spectral heterogeneity of urban environments (Jensen and Cowen, 1999; Herold
et al., 2003a). Another critique of urban remote sensing is that, although remote
sensing images provide vast amounts of spatial and temporal details of urban area,
remote sensing is largely blind to patterns and processes (Longley, 2002). Without
appropriate methods with which to distil patterns and link these patterns with the
drivers and processes behind them, information in remote sensing images can only
be marginally used in urban analysis. In this context, Longley and Tobon (2004)
pointed out that development of direct, timely and spatially disaggregate urban
indicators that can be derived from remote sensing images is key to a new data-rich
and relevant urban analysis.

In this chapter, we introduce geostatistics and spatial metrics as two methods of
addressing these challenges and illustrate their utility in three case studies: to link
land cover to land use, to link urban form to population density, and to link urban
pattern to the growth drivers. The functions of geostatistics and spatial metrics in
these case studies are two-fold: as descriptors of image texture and as indicators
of urban form. Image texture refers to the tonal change in the image. It is closely
related to pattern, which is the spatial arrangement of textural components (Brivio
and Zilioli, 2001). Texture is an important interpretation key in areal interpretation,
together with shape, context, association, etc. (Haack et al., 1997), because it
describes the spatial variability of ground features. Considering that very high-
resolution satellite images are almost comparable to aerial photographs, texture is
also likely to help derive information from satellite images. It is in this context that
we examine the utility of geostatistics and spatial metrics as texture descriptors to
link land cover to land use. The other usage of geostatistics and spatial metrics
is to describe urban form and pattern. Morphology and pattern are the products
of development processes. As discovered by research in urban growth modelling,
drivers behind the development processes can be social and economic as well as
physical. Effective urban indicators should thus be able to provide insight on the
linkage between urban patterns and processes.

Before introducing geostatistics and spatial metrics as two methods to describe
image texture and the spatial variability in urban areas, it has to be pointed out that
other methods are also available, such as the standard deviation method (Arai, 1993),
the contrast between neighbouring pixels (Edwards et al., 1988), local variance
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(Woodcock and Harward, 1992), fractal dimensionality (Batty and Longley, 1994;
De Jong and Burrough, 1995), grey-level co-occurrence matrix (Haralick, 1973)
and wavelet analysis (Zhu and Yang, 1998). The studies vary in terms of image
type, spatial unit and the statistical method. The geostatistics and spatial metrics
methods to be introduced in this chapter are more complex. They are discussed as
new approaches to analyse satellite images of very high spatial resolution.

5.2 Geostatistics

Initially developed in the field of mining, geostatistics is applied statistics based on
theories of regionalized variables (Webster, 1973). Regionalized variables describe
phenomena with spatial distribution and exhibit spatial continuity. In the context of
remote sensing, the reflectance value of a pixel can be considered as a function of its
geographic location, hence a realization of a regionalized variable (Gooverts, 1999).
A key concept in geostatistics is spatial autocorrelation, meaning that observations
that are close to each other in geographic space tend to have more similar values than
observations far apart. Spatial autocorrelation suggests that the variance between
observations in the near range tends to be small and increases with distance. The
geostatistical tool to describe the scale and pattern of spatial variability is called
semi-variance or the structure function, and is calculated by the following equation:

�̂�h� = 1
2Nh

∑
i

�zi − zi+h�
2 (5.1)

where h is the lag distance along a specified direction, i.e. it is a vector, r̂�h� is the
semi-variance at lag h, zi and zi+h are the values of a pair of pixels separated by
h, and Nh is the number of such pairs in the study area. By varying the value of h
and calculating the corresponding r̂�h� using equation 5.1, an experimental semi-
variogram can be generated. Note that in using equation 5.1, a pixel is assumed to
be a point. In reality, each pixel corresponds to a certain extent on the ground. This
scale inconsistency is discussed by Lark (1996) and Jupp et al. (1998). In practical
analysis, equation 5.1 is often used.

The application of geostatistics in remote sensing is abundant in the literature.
Applications include image interpolation (Herzfeld, 1999), contextual classification
(Kyriakidis et al., 2004) and uncertainty mapping (De Bruin, 2000). In the context
of studying land use patterns, geostatistics can reveal the spatial variability of
urban structures. For example, a comparison study of TM images of different cities
reveals that a large metropolitan area has significantly higher semi-variance than
that of a small city (Brivio and Zilioli, 2001). In this chapter, we examine the utility
of semi-variances to describe the characteristics of different urban land uses, and
the linkage of land use pattern to human population distribution. Unlike previous
studies, the semi-variance analysis in this chapter is based on an image of very
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high spatial resolution, i.e. the 4 m multispectral IKONOS image. Such images are
generally considered to have the highest potential for urban remote sensing (Jensen
and Cohen, 1999).

The lag distance h in equation 5.1 is a vector, which means that it is associated
with both a distance and a direction. When the ground features do not show any
directional organization, i.e. the value of r̂�h� in equation 5.1 does not depend
on the direction but distance only, h is reduced from a vector to a scalar. The
semi-variogram obtained is considered isotropic (omni-directional); otherwise it is
anisotropic. In this chapter, we illustrate geostatistics using isotropic variograms
only. Another thing to note is that scale also has an effect on the value of semi-
variograms. For the same study area, the experimental semi-variogram may vary
depending on the spatial resolution of the remote sensing image. Additionally, the
spatial unit selected to calculate a semi-variogram can also have an impact. In
the literature, the spatial unit used to conduct semi-variogram analysis is usually a
square window (e.g. 7 × 7 pixels) and little guidance is available on selecting the
size of the window. In this study, we use land use zones as the spatial unit, which
has a better correspondence with urban patterns.

5.3 Spatial metrics

The semi-variances method in equation 5.1 works with the digital values of pixels.
The second method we introduce, spatial metrics, is rather different, in the sense
that it works with categorical information. Spatial metrics were first developed in
the field of landscape ecology to describe the composition of a natural landscape.
The rationale behind using spatial metrics to describe the composition and pattern
of an urban landscape is as follows. An urban area is characterized by diverse
materials, such as concrete, asphalt, metal, plastic, glass, shingles, water, grass,
shrubs, trees and soil (Jensen and Cowen, 1999). Although the reflectance values of
these materials are different, they can be grouped into a few land cover categories,
such as vegetation, built-up area, etc. In fact, Ridd (1995) proposed a V–I–S model
to categorize urban areas, where V, I and S stand for vegetation, impervious surface
and soil, respectively. The land use of an area depends on the proportion and the
spatial configuration of these land covers (Figure 5.1). Spatial metrics have the
capability to describe the composition and spatial arrangement of the land covers in
a landscape. Therefore, they can be used to describe urban patterns and structures.
When applying spatial metrics, the spatial unit used is called a patch. A patch is
defined as an object made up of pixels which are adjacent to each other and have
the same land cover. For example, a house occupying 20 × 20 m on the ground
might correspond to 5×5 pixels in a multispectral IKONOS image. Although these
5 × 5 pixels may have different spectral reflectance values in the remote sensing
image, their land covers are all classified as built-up, hence forming a continuous
patch. Similarly, a contiguous vegetated area such as a lawn also forms a patch.
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Figure 5.1 Examples of land use zones in the study area

Many spatial metrics have been developed. Table 5.1 provides a list of those
spatial metrics that are especially related to composition and spatial configuration.
A thorough discussion of spatial metrics and their linkage to remote sensing is
provided McGarigal et al. (2002) and Herold et al. (2003a).

Although spatial metrics are relatively new to the urban analysis community,
their usage is increasing rapidly. Currently, spatial metrics have been used on urban
land use/land cover classification (Herold et al., 2003b) and population density esti-
mation (Liu et al., 2005). Their usage in urban modelling is especially substantive.
Herold et al. (2005) documented the role of spatial metrics in the analysis and
modelling of land use change. It is argued that urban landscape composition and
pattern, as described by spatial metrics, are critical independent measures of the
economic landscape function and can therefore provide an improved interpretation
and evaluation of modelling results. Parker et al. (2001) summarized the usefulness
of spatial metrics with respect to a variety of urban models and argued for the
contribution of spatial metrics in helping link economic processes and patterns of
land use. Alberti and Waddell (2000) substantiated the importance of spatial metrics
in urban modelling by using them to model the effects of complex spatial patterns of
urban land cover and land use on social and ecological processes. Geoghegan et al.
(1997) explored spatial metrics in modelling land and housing values. They found
that housing price is influenced by the land use patterns surrounding a parcel, indi-
cating that people care very much about the landscapes around them. The authors
recommended spatial metrics to describe such relationships. Recently, Dietzel et al.
(2005) illustrated how spatial metrics can be used to link the empirical evidence of
spatio-temporal dynamics of land use to urban theory. In this chapter, we demon-
strate the utility of spatial metrics in linking land cover to land use, and linking
urban form to other urban characteristics, such as population distribution and urban
growth factors.

One challenge in using spatial metrics is how to choose the most effective ones.
Currently, little guidance exists on spatial metric selection, since the suitability of
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Table 5.1 Examples of the spatial metrics

Metrics description Description

PLAND (percentage of landscape) PLAND quantifies the proportional
abundance of each patch type in the
landscape. For this research, it is used
to describe the percentage of buildings,
vegetation, and other land cover types
in a land use polygon

PLAND = Pk =
∑
l

akl

A
�100�

Pk = proportion of the landscape
occupied by land-cover class k

akl = area (m2) of patch kl, i.e. patch l
with land cover k

A = total landscape area (m2)

PD (patch density)

PD = N

A
�10� 000��100�

N = total number of patches in the
landscape

A = total landscape area (m2)

PD describes the number of patches on
a per unit area basis that facilitates
comparisons among land use polygons
of varying size. The higher the PD, the
more fragmented the land use polygon.
High-density single-unit housing is
expected to have the highest PD value,
while forest/rangeland may have the
lowest

LPI (largest patch index) LPI quantifies the dominance of the
largest patch. A fragmented landscape
(e.g. high-density single-unit housing)
has a lower LPI value than a less
fragmented landscape (e.g. agricultural
land)

LPI = max�aij�

A
�100�

akl = area (m2) of patch kl, i.e. patch l
with land cover k

A = total landscape area (m2)

ENN (Euclidean nearest-neighbour
distance)

ENN equals the distance (m) to the
nearest neighbouring patch of the same
type, based on shortest edge-to-edge
distance. ENN is a simple measure of
isolation. For buildings, ENN can help
to describe whether the houses are
spaced regularly. High-density
single-unit housing displays the highest
orderliness and closeness to each other.
Therefore, its ENN is expected to be
small and has a low SD

ENN = hkl

hkl = distance (m) from patch kl to the
nearest neighbouring patch of the same
class k, based on patch edge-to-edge
distance, computed from cell centre to
cell centre

ENN-MN, Euclidean mean nearest-
neighbour distance; ENN-SD,
Euclidean nearest-neighbour
distance SD

AREA (patch area)

AREA = akl

(
1

10� 000

) AREA_MN and AREA_SD describes
the uniformity of the patches
comprising a landscape mosaic
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aij = area (m2) of patch kl, i.e.
patch l with land cover k

AREA_MN, mean patch areas in
the landscape; AREA_SD, SD of
patch areas in the landscape

ED (edge density) ED measures the total edge length of a
landscape on a per unit area basis. For
landscapes of similar size, the more it
is fragmented, the higher is its edge
density

ED =
m∑

k=1
eik

A
�10� 000�

eik = total length (m) of edge in
landscape involving land cover
type i

A = total landscape area (m2)

FRAC_AM (area-weighted mean
patch fractal dimension)

FRAC_AM describes the shape
complexity of a landscape. Its value is
between 1 and 2. FRAC_AM
approaches 1 for landscapes with
simple shape of perimeter. FRAC_AM
approaches 2 for highly complex
shapes of perimeters. Fractals have
been used to link urban form and
functions (Batty and Longley, 1994)

FRAC − AM =
n∑

j=1

⎡
⎢⎢⎣2 ln��25pij�

ln aij

�

⎛
⎜⎜⎝ aij

n∑
j=1

aij

⎞
⎟⎟⎠

⎤
⎥⎥⎦

pij , perimeter (m) of patch ij; aij ,
area (m2) of patch ij

Cohesion =⎡
⎢⎣1 −

∑
j

p∗
kl

∑
l

p∗
kl

√
a∗

kl

⎤
⎥⎦ �

[
1 − 1√

z

]−1

��100�

Patch cohesion index measures the
physical connectedness of the
corresponding patch type. Cohesion
approaches 0 as the proportion of the
landscape comprised of the focal class
decreases and becomes increasingly
subdivided and less physically
connected. Cohesion increases
monotonically as the proportion of the
landscape comprised of the focal class
increases

p∗
kl , perimeter of patch kl in terms
of number of cell surfaces; a∗

kl,
area of patch kl in terms of
number of cells; Z, total number
of cells in the landscape

Modified after McGarigal et al. (2002).

specific metrics depends on the objective of the study and the landscape character-
istics of the study area. Also, in the context of spatial metrics and remote sensing,
the categorical map on which spatial metrics are applied is usually generated by
interpreting remote sensing images. This means any change in image resolution and
thematic and semantic class definitions can affect the accuracy of the land cover
map and hence the performance of the spatial metrics.
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5.4 Examples

5.4.1 Data preparation

In this section, we illustrate the utility of geostatistics and spatial metrics for urban
analysis through three examples: the linkage between land cover and land use, the
linkage between urban morphology and population distribution, and the linkage
between urban patterns and growth processes. All three examples are based on a
dataset compiled for Santa Barbara, CA, USA. The remote sensing image used is
a mosaic of seven individual IKONOS images acquired during March–July 2001.
Since the images were acquired on different dates with varying atmospheric and
illumination conditions, geometric and atmospheric corrections were conducted
using standard image analysis algorithms to create a geometrically rectified and
normalized image mosaic. Details on the preprocessing of the IKONOS images can
be found in Herold et al. (2002b). For this study, the four multispectral bands with
a spatial resolution of 4 m were used.

The IKONOS image was digitized into land use zones by an experienced remote
sensing specialist. Each land use zone was assigned to one of the nine land use cate-
gories in Table 5.2 through visual interpretation. A land use zone is a photomorphic
region (Peplis, 1974), which refers to an image segment with a homogenous image
texture visibly different from that of the neighbouring land use zones. In residential
areas, the structures of the built-up areas within a land use zone are similar in terms
of size, density and spatial pattern. The boundary of a land use zone follows streets
and other relevant natural and anthropogenic features whenever possible. Figure 5.1
is an example of the land use zones in the IKONOS image.

The IKONOS image is classified into three land cover types: buildings, green
vegetation, and other, which includes roads, parking lots, bare soil, water bodies and
non-photosynthetic vegetation. The rationale for these three land cover types is the
V–I–S (vegetation–impervious surface–soil) model proposed by Ridd (1995), who
demonstrated that different urban land uses can be characterized by the composition
of vegetation, impervious surface and bare soil. To identify the three land cover types
in the IKONOS image, an object-orientated approach is utilized using e-cognition
(Herold et al., 2002). Green vegetation spectrally separates fairly well. However,
there are some spectral similarities between buildings or roof types and other urban
targets, such as roads and bare soil surfaces, especially given the relatively low
spectral resolution of IKONOS. The output is a land cover map with each pixel
labelled as building, vegetation or other. Contiguous pixels with the same land-
cover type are then aggregated to form land cover patches which are to be used by
spatial metrics. The overall accuracy of the land cover map is assessed as 82.4%,
and the kappa coefficient is 71.4%. Green vegetation is mapped with the highest
accuracy, with a tendency to be overmapped. There is some confusion between the
buildings/roofs and the other land-cover classes, due to the aforementioned spectral
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Table 5.2 Land use classification based on semi-variogram

Class Producer
accuracy

No. of
samples

LSU
1

MSU
2

HSU
3

MU
4

INST
5

REC
6

CI
7

AgR
8

FW
9

LSU 1 53�9 39 21 5 5 – 2 2 4 – –
MSU 2 56�7 30 2 17 4 5 – – 2 – –
HSU 3 75�6 41 – – 31 9 – – 1 – –
MU 4 76�5 34 – 3 4 26 – – 1 – –
INST 5 63�6 22 4 1 – 2 14 – 1 – –
REC 6 54�5 22 – – – – 1 12 4 4 1
CI 7 52�3 44 – 4 3 5 1 2 23 4 2
AgR 8 54�6 44 1 – 2 – 1 6 6 24 4
FW 9 35�7 28 – – – – 5 8 5 – 10

Total 304 28 30 49 47 24 30 47 32 17
User accuracy 75�0 56�7 63�3 55�3 58�3 40�0 48�9 75�0 58�8

Overall accuracy = 58.6%; � = 53.1%.

similarity. These errors in the categorical land cover map could be propagated to
subsequent analysis using spatial metrics.

Nine land uses were identified in the study area. These land use types vary
in terms of land cover composition and spatial variability. They are: residential
uses, including low-density single-unit (LSU) area, medium-density single-unit area
(MSU), high-density single unit area (HSU), multiple unit area (MU); commercial
and industrial land use (CI); institutional land use (INST); recreational and open
space (REC); agriculture (AgR); and forest and wetlands (FW).

The definitions of these land use types are found in Table 5.2. These nine land
use types are commonly found in urban areas, although the definitions may vary
from city to city. Each land use zone digitized from the IKONOS image is assigned
to a land use category through visual interpretation by the image analyst. Figure 5.2
illustrates the different land uses in the IKONOS image and the classified land cover
map. For illustration purposes, a map showing the accurate shape and location of
building footprints and roads is included in Figure 5.2. By comparing the IKONOS
land-cover classification map with the map of building footprints and roads, it can
be seen that the land-cover classification is fairly accurate.

In contrast to spatial metrics, which use categorical land cover information, a
semi-variogram is applied to grey-level images. Several grey-level images were
experimented upon, including each of the four bands of the multispectral IKONOS
image and a grey-level image based on the normalized difference vegetation index
(NDVI) of each pixel. NDVI was chosen because it can efficiently differentiate
built-up areas from vegetation. The NDVI image was used for the semi-variogram
analysis in this chapter.
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Single-unit high-
density residential

IKONOS
4/3/2 composite

IKONOS
classification

Digital vector
buildings/roads

Single-unit medium-
density residential

Single-unit low-
density residential

Multi-unit
residential

Commercial and
industrial

Institution

Recreational and
open space

Figure 5.2 Examples of spatial land cover configurations for major urban land-use cate-
gories shown as an IKONOS false-colour composite, and an IKONOS classification result with
buildings in red and vegetation in green. The digital vector building/roads data are included
here to provide a ground reference of built-up area
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5.4.2 Linkage from land cover to land use

5.4.2.1 Land use classification based on geostatistics

A semi-variogram was calculated for each land use zone using the NDVI image. In
calculating the semi-variogram value, directions are assumed to be isotopic and
the lag distances varied in the range 1–30 pixels. Figure 5.3 portrays how semi-
variances change with different land use classes. It can be seen that vegetated areas
(forest and agriculture) have the lowest variances, followed by recreational/open
space and commercial land use. Residential areas display higher variances, and
are very similar to each other. For residential classes and commercial land use,
the semi-variograms reach the sill on or before lag 30, while for other classes,
the semi-variance is still increasing. The semi-variogram profile in Figure 5.3
suggests that a lag distance of 30 is sufficient to differentiate the land use
classes.

The similar semi-variograms among residential land uses suggest that it is not easy
to use semi-variograms to differentiate these classes. To confirm this hypothesis,
a classification exercise was conducted; 433 land zones were sampled from the
study area, 129 zones were used to train the different classifiers, while the other
304 were reserved for accuracy assessment. Recall that the land use category of
each land zone is assigned by a remote sensing expert through visual interpreta-
tion. The output is considered to be of such high accuracy that it can serve as
the ground truth. Yet due to the exhaustive and exclusive classification scheme
used, some land use zones fall between two categories. This is especially promi-
nent in residential areas, where the boundary between low, medium and high
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density is usually blurry. When such a ‘transitory’ zone is used to train or test
accuracy, it is difficult to tell whether the error is due to the crisp classifica-
tion scheme or the classifier utilized. A discussion of the problems associated
with crisp classification can be found in Wang (1990). In this chapter, because
our interest is the accuracy of a classifier, only the most representative zones in
each land use category were sampled, thus resulting in 433 land use zones in
total.

The semi-variograms of the training zones from each land use category were
calculated. Their average was considered as the characteristic semi-variogram of
that land use type. The semi-variograms of the test land use zones were compared
with those of the training zones. A minimum distance classifier was used to identify
the land use category of the test land use zones. Table 5.3 shows the result of
this exercise. The overall accuracy is about 58% and the kappa coefficient is 52%.
The confusion mainly occurs within two clusters, the residential cluster and the
non-residential cluster, as indicated by Figure 5.3.

5.4.2.2 Land use classification based on spatial metrics

Like variograms, spatial metrics can also be used to describe land use characteristics.
The spatial metrics method was applied to the land cover map, which consists of
three classes: built-up, vegetation and other. Each land use zone is described using
a vector of nine spatial metrics:

X = �PLANDbuilt� PLANDveg�PDbuilt� PDveg�ENN_MNbuilt�ENN_SDbuilt�

COHESION�CONTAG�SHDI	

Table 5.3 Confusion matrix of metrics-based land use classification

Class Producer
accuracy

No. of
samples

LSU
1

MSU
2

HSU
3

MU
4

INST
5

REC
6

CI
7

AgR
8

FW
9

LSU 1 48�7 39 19 10 – – – 8 1 1 –
MSU 2 73�3 30 1 22 – 5 – – 2 – –
HSU 3 70�7 41 – – 29 11 – – 1 – –
MU 4 70�6 34 – – 3 24 5 – 2 – –
INST 5 72�7 22 – 1 0 1 16 – 4 – –
REC 6 59�1 22 1 – – – – 13 1 5 2
CI 7 70�5 44 – 2 2 3 6 – 31 – –
AgR 8 47�7 44 3 2 – 1 – 11 – 21 6
FW 9 42�9 28 – – – – – 6 – 10 12

Total 304 24 37 34 45 27 38 42 37 20
User accuracy 79�2 59�5 85�3 53�3 59�3 34�2 73�8 56�8 60�0

Overall accuracy = 61.5%; � = 56.6%.
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Figure 5.4 shows a comparison between different land uses described by spatial
metrics. As in the experiment with semi-variograms, the spatial metrics of training
and test land use zones were respectively calculated. A minimum distance clas-
sifier was then used to determine the land use category of each test zone. The
results are listed in Table 5.6. Compared to the geostatistics method, spatial
metrics performed slightly better, with an overall accuracy of 61.5% and kappa
coefficient of 57.2%.

Compared to semi-variance, the meaning of the spatial metrics is more intuitive.
For percentage of landscape (PLAND), it can be seen that the percentage of built-up
areas increases as the land-use class moves from low-density residential to medium-
density residential and high-density residential. Commercial areas also have a high
percentage of built-up area but, compared to residential land uses, their percentage
of vegetation is lower. In forest and agricultural areas, built-up land cover is
barely present. Lo (1995) pointed out that vegetation is a good indicator of the
population density of a neighbourhood. The plot of PLAND seems to support this
statement.

Patch density measures the number of patches on a per unit area basis; the higher
the patch density, the higher the degree of fragmentation. Houses in low-residential-
density areas are usually far apart from each other. The vegetated areas separating
two adjacent houses tend to be big. As the population density increases, the size
of detached houses decreases, as does the vegetated area separating them. This
suggests that as the residential population density increases, the patch density of
both built-up and vegetation areas will decrease, as demonstrated by Figure 5.4b.
MeanENN and stdENN respectively measure how far apart two adjacent houses are
and the variation of that distance. Houses in low-residential-density areas display
less orderliness and tend to be farther away from each other. It is therefore no
surprise to see that meanENN and stdENN are both higher for low-density resi-
dential areas than for high-density residential areas. ‘Contagion’ measures how
contagious a general patch is in the study area. Since built-up and vegetated patches
in low-density areas tend to be big, this means that each patch in these areas is more
‘contagious’, therefore it has a higher contagion value than high-density residential
areas. Shannon’s diversity index is also correlated with the degree of fragmenta-
tion. Since high density areas are more fragmented, they have more patches per
unit area, thus displaying a higher degree of diversity. The plots in Figure 5.4
show that all metrics seem to contribute to the differentiation of land-use classes.
However, the cohesion values of all classes are over 90%. The difference is rela-
tively low, suggesting that cohesion may not be an efficient feature for land-use
classification.

5.4.2.3 Land-use classification based on combined information

A comparison between Tables 5.3 and 5.4 suggests that the overall semi-variance
and kappa coefficients of spatial-metrics-based classification are similar. However,
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Figure 5.4 Plot of land metrics
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Table 5.4 Land use differentiation based on semi-variogram and spatial metrics

Class Producer
accuracy

No. of
samples

LSU
1

MSU
2

HSU
3

MU
4

INST
5

REC
6

CI
7

AgR
8

FW
9

LSU 1 69�2 39 27 8 – – – 4 – – –
MSU 2 76�7 30 3 23 2 2 – – – – –
HSU 3 61�0 41 – 1 25 14 – – 1 – –
MU 4 76�5 34 – 1 4 26 3 – – – –
INST 5 77�3 22 – – – 4 17 – 1 – –
REC 6 50�0 22 2 – – – – 11 – 7 2
CI 7 70�5 44 – – 2 4 7 – 31 – –
AgR 8 59�1 44 3 1 – – 3 6 – 26 5
FW 9 60�7 28 2 – – – – 1 – 8 17

Total 304 37 34 33 50 30 22 33 41 24
User accuracy 73�0 67�7 75�8 52�0 56�7 50�0 93�9 63�4 70�8

Overall accuracy = 66.8%; � = 62.5%.

Table 5.5 Correlation between population density and urban form descriptors

Method Descriptors of urban form R2

Semi-variance vari� i = 1� 
 
 
 � 20; semi-variances with lags of 1–20 pixels 0�20
Spatial metrics Percentage of built-up area (PLAND1) 0�55

Percentage of vegetated area (PLAND2)
Patch density of built-up area(PD1)

their accuracy in individual land use classes varies. This suggests the potential
to combine the two methods together to achieve a better land use differentiation.
Table 5.5 lists the land use classification accuracy when the two methods were
combined. It can be seen that the accuracy reached over 62%, which is about 10%
higher than that using either method alone. The producer’s and user’s accuracies
of residential classes improved significantly, except for multi-unit residential areas.
The accuracies for recreation, agriculture and forest also improved, but their accu-
racies were not as high as that of commercial and some residential areas. All three
classes are characterized by large patches of vegetated area, which is usually better
discriminated using spectral information.

5.4.3 Linking urban form to population density

In this section, we examine the linkage between urban form and population density.
Population density is important ancillary information from which to derive land use
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information (Mesev, 1998). Remote sensing has long been used to estimate urban
population and socio-economic parameters. Example surrogates derivable from
remote sensing images include the extent of an urbanized area, the image spectral
reflectance value, the proportion of each land use class, etc. In this study, we use
semi-variances and spatial metrics as descriptors of urban form and land use pattern
to examine their linkage to residential population density. The rationale behind this
linkage is that populations living in areas with similar housing characteristics tend
to have similar population density. Housing characteristics are determined by the
size of the houses, the greenness and other conditions. The interaction of these
characteristics forms different patterns on remote sensing images. Semi-variance
and spatial metrics are both capable of describing the spatial variability of an area.
Therefore, they have the potential to link urban form to population density. 1578
census blocks with homogenous residential land use were collected in the study
area. Their population densities were obtained from US Census 2000. The semi-
variance and spatial metrics of each block were calculated and correlated with
the natural logarithms of population density. Semi-variances corresponding to lag
distance between 1 and 20 pixels were examined on the NDVI image. The R2

obtained is about 0.20.
For the spatial metrics method, although nine spatial metrics were examined in

land use classification, only three of them were found significant in correlation
with population density: the percentage of built-up area, percentage of vegetation
in the area, and the patch density of the built-up area. The linear correlation has the
following form (Figure 5.5):

ln�d� = 8�819 + 1�772p1 − 2�612p2 + 0�0632p3�R2 = 0�55 (5.2)

where d is the population density (people/ km2); p1 the percentage of built-up area

(PLANDb); p2 the percentage of vegetation (PLANDv); and p3 the patch density
of the built-up area (PDb).

The R2 obtained is 0.55, which is significantly higher than that of the semi-
variance method. The number 0.55 suggests two things. One is that there is indeed
some correlation between urban form and population density, but the correlation is
not high enough to make reliable estimates of population. The significant residuals
suggest that although urban form can explain a significant amount of variance in
population density, factors other than urban form also deserve examination. Another
conclusion is that even though spatial metrics and semi-variances are both descrip-
tors of urban form, spatial metrics clearly have a higher correlation with population
density. This underscores Longley and Tobon’s (2004) point, that appropriate urban
indicators are key for urban analysis based on remote sensing. Clearly, when the
appropriate indicators are used, more information can be inferred from remote
sensing data.
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Figure 5.5 The correlation between spatial metrics and population density: (a) the compar-
ison between texture-estimated population density and ground reference; (b) plot of the
residual of the regression

5.4.5 Linking characteristics of spatial patterns and processes

The linkage between land use and population density suggests that land use is just
one of the factors determining the spatial distribution of population in an area.
The significant residuals left in equation 5.2 suggest that other factors may help
to explain the variation in population distribution. Research in urban modelling
suggests that the current population distribution pattern is the outcome of a devel-
opment process. Such a process is often controlled and constrained by some spatial
growth factors in the first place. In this section, we explore the linkage between
urban form and growth factors, using the geographically weighted regression (GWR)
technique (Fotheringham et al., 2002). Unlike the linear regression technique used
in section 4.5, which assumes that the relationship holds everywhere in the study
area, GWR considers spatial non-stationarity and allows the regression relationship
to vary over space. Specifically, given a location u in space, its local regression
model can be written as:

y�u� = �0�u� + �1�u�x1 + 
 
 
 + �n�u�xn (5.3)

To estimate the values of the coefficients and the dependent variable at location
u, a geographically weighting scheme is applied to fitting by least squares. The
weighting scheme is organized such that data near location u are given a heavier
weight in the regression than data further away. The result is that the regression
determinant varies for different locations (Figure 5.6).

The analysis in section 5.4.5 shows that when urban forms are measured by spatial
metrics, there is a stronger correlation between urban form and population density
than if geostatistics are used. Based on this finding, in this section, the relationship
between urban form and growth factors is examined using the spatial metrics method



110 CH05 SPATIAL METRICS AND GEOSTATISTICS IN URBAN ANALYSIS

Figure 5.6 Spatial distribution of regression results for three growth factors vs. several
spatial metrics describing residential urban pattern

only. Previous research has built an urban growth model for the study area (Herold
et al., 2003c) and found that topographic slope, distance to highways and distance
to the central urban core are three very important factors controlling the population
distribution in the area (Liu and Clarke, 2002). These three factors become the
independent variables in GWR. Urban form, which is measured by spatial metrics,
is the dependant variable. GWR is applied to examine to what extent the variances
in the urban form can be explained by the three growth factors and how the power
of this explanation varies over space. The spatial units of this analysis are the
land use zones used in section 5.4.2 and illustrated in Figure 5.1. In describing the
form of the land use zones, five spatial metrics were used: landscape contagion
(CONTAG); percentage of buildings (PLANDb); patch density of buildings (PDb);
patch density of vegetation (PD�); and standard deviation of the areas of vegetation
patches (AREA_SDv). The topographic slope of a land use zone is the average
slope of the zone. In implementing GWR on a land use zone whose centroid is
u, the distances to highways and to regional urban centres are calculated as that
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Table 5.6 Results of the GWR analysis for multivariate regression models

Landscape Buildings Vegetation

CONTAG PLANDb PDb PD� AREA_SD�

Local sample size 70 94 88 88 38
Global CoD (R2) 0�55 0�31 0�34 0�31 0�34
T-slope 7�12 −6�39 −6�62 −5�94 0�13
T-core 7�91 −2�06 −3�8 −4�44 7�89
T-highway 8�05 −4�27 −4�02 −3�21 7�33
GWR CoD 0�73 0�47 0�51 0�47 0�69

Three growth factors are considered (distance to urban core, distance to highways, and slope) vs. five
spatial metrics. One metric represents the heterogeneity of the landscape (CONTAG), two metrics
describe characteristics of the land cover class building, two the class vegetation

of the centroid. A predefined number of nearest neighbours of u is searched and
used in regression analysis. For example, in examining the correlation between
CONTAG and the three growth factors, 70 nearest neighbours were used. Similarly,
in running the correlation using PLANDb, 94 nearest neighbours were used. The
number of nearest neighbours can be specified or determined by the GWR software
(Fotheringham et al., 2002).

The result of GWR is summarized in Table 5.6. The value Global CoD (global
coefficient of determination) can be interpreted as the R2 of the global regres-
sion model based on all observations. GWR CoD, on the other hand, represents
the R2 of the geographically weighted regression. It provides a summary of the
varying coefficients of determinants associated with different land use zones. The
significance of each predictor in GWR is reflected in the t-values. T-slope, T-core,
and T-highway refer to the t-value associated with slope, distance to urban centre
and distance to highway, respectively. If the absolute t-value is above 1.96, the
predictor is considered significant and retained for the regression model. t-Values
below 0 indicate a negative linear relationship between the growth factor and the
spatial metric. It can be seen from Table 5.6 that all three factors are significant in
explaining the variances in urban form, except the standard deviation (SD) of the
areas of vegetation patches (Area_SD��).

A comparison between the Global CoD and GWR CoD suggests the improve-
ments in the regression models using geographically weighted regression. This is
expected, since local regression models make more adjustments to specific local
characteristics than do global approaches. The overall GWR CoD for these metrics
is in the range 46–72% (Table 5.2), meaning that the three growth factors are able to
explain a significant proportion of the urban patterns which emerged as the result of
historical growth processes. For each land use zone, its local CoD is associated with
its centroid and mapped in Figure 5.6. It can be seen that the local CoD varies in
different parts of the study area. In some areas, the relationship is more determined
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than in others. The spatial distribution of CoD of contagion (CONTAG) and patch
density of developed area (PDb) are fairly similar. Both show high correlations with
the growth factors in residential areas and display low CoD in areas of agricultural
land use, at urban edges and in the transition zones between urban centres. The
morphology of these areas is better correlated with AREA_SDv, which describes
vegetation pattern. From an urban development perspective, the areas which are
highly correlated with CONTAG and PDb are the residential areas which have been
subjected to planning. The areas poorly correlated with CONTAG and PDb are
mostly unplanned or rural. These are usually the areas under development pressure,
hence they are of more interest to urban planning. The boundaries of these areas
are likely be changed by actions such as farmland protection or the establishment
of urban growth boundaries.

5.5 Conclusion

The availability of a new generation of satellite images of very high spatial resolution
suggests an unprecedented opportunity for utilizing remote sensing to study urban
patterns and processes and the link between them. The vast amounts of spatial and
temporal details provided by these images must be summarized into effective urban
indicators in order to become useful and successful. It is in this context that the
development of new image analysis methods is widely considered to be a pressing
challenge. In this chapter, we introduced geostatistics and spatial metrics as two
methods with which to derive urban information from remote sensing images. To
illustrate their usage, three applications were presented: the usage of geostatistics
and spatial metrics as image texture descriptors to infer urban land use information;
the usage of geostatistics and spatial metrics as descriptors of urban form; and their
linkage with other characteristics of the urban area such as population distribution
and urban growth factors. Although both geostatistics and spatial metrics are valid
descriptors of urban patterns, our study shows that the amount of urban information
that can be derived from them are rather different. This suggests that their combined
application provides a more comprehensive description and thus is more powerful
than either descriptor alone. Clearly, the examples have shown potential, but much
research remains to be conducted if remote sensing images are to be used to foster
our understanding of urban areas from space and link empirical evidence to urban
theory and practices.
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Using remote sensing and GIS
integration to identify spatial
characteristics of sprawl at the
building-unit level
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6.1 Introduction

One of the most remarkable human activities in terms of transforming and impacting
the natural environment is the development of land for settlement. Patterns and
configurations of urbanization have implications for a wide gamut of issues and
policies, from environmental quality to health, to transportation and energy, to
social and economic welfare. Global trends of rural to urban population migrations,
coupled with the unprecedented technological capability of modern societies to
construct urban environments, have led to magnitudes of urbanization unparalleled
at any former period in history. In the USA alone, 2.08 million acres of open land
were urbanized annually between 1992 and 2002 (3.95 acres/minute), an increase
from 1.37 million acres/year of urbanization between 1982 and 1992 (Natural
Resources Conservation Service, 2004). Not only are the rates of urban growth
accelerating, but the patterns of urban growth are becoming more dispersed. The
importance of urban sprawl to many public-interest, government and academic
agencies has led to multiple initiatives of research and analysis. Many researchers,
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policy makers and stakeholders have an interest in monitoring, evaluating and
influencing patterns of urban growth, increasing the need for a more comprehensive
understanding of the phenomenon of sprawl than currently exists. Considering the
land-based and spatial nature of urbanization, geospatial scientists have a significant
role to play in the discourse on sprawl. Furthermore, the geospatial technologies of
remote sensing and GIS are logical tools to be widely utilized for the analysis of
sprawl, or problematic spatial patterns of urban growth. While geospatial research to
date has only just begun to be utilized within the urban planning and policy discourse
regarding sprawl, great promise exists for advancing the study and management of
sprawl through the integration of remote sensing and GIS.

Since the onset of flight in the early twentieth century, remote sensing has been
utilized for the delineation, analysis and evaluation of urbanization. Techniques and
platforms vary widely, from film-based low-altitude monochromatic aerial photog-
raphy to digital space-based hyperspectral sensors, each with particular benefits
and abilities that can aid in the analysis of sprawl. Likewise, GIS has been widely
utilized for urban analysis for the past several decades, greatly advanced by the
creation of GIS-based demographic data by government agencies such as the US
Census Bureau. Many academic sprawl-related studies utilize the US Census TIGER
GIS database for various geographic extents, such as metropolitan areas (MAs)
and urbanized areas (UAs), as well as census tracts and census blocks. Because
remote sensing and GIS techniques and technologies have become so closely inter-
related, it is now possible to seamlessly utilize both within the same computing
environment. However, this ease of integration has only recently become avail-
able. In the past, urban research has tended to develop along two largely separate
tracks, one following a more demographic approach (primarily GIS-based) and the
other following a more physical/environmental approach (primarily remote sensing-
based). As these two tracks continue to merge and become integrated, both tech-
nologically and methodologically, new methods become available for researchers
to more effectively delineate, analyse and understand the patterns and processes of
sprawl.

6.2 Sprawl in the remote sensing and GIS literature

Past studies of sprawl can be divided into two general camps, physical landscape-
based analysis and demographic-based analysis. Remote sensing has been most
often employed in physical approaches to analysing sprawl, due to its ability to
provide temporal/spatial information on the physical covering of the Earth at a
given time period. The usefulness and potential application of remote sensing for
urban analysis has steadily grown with the increasing numbers of remote sensing
platforms, decreasing costs and ever-increasing sophistication of computer tech-
niques. This point was recently highlighted by several prominent remote sensing
journals that dedicated entire issues to focus solely on urban themes, e.g. Remote
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Sensing of the Environment 2003; 83(3), and Photogrammetric Engineering and
Remote Sensing 2003; 69(9).

Remote sensing literature has tended to use the term ‘sprawl’ as related to
urbanization somewhat loosely, often to indicate rapid urbanization, or urbanization
along the urban/rural fringe, or low-density urbanization (Hurd et al., 2001; Weng,
2001; Epstein et al., 2002). Classic change-detection techniques utilizing multi-
date imagery have been one common approach for identifying newly developing
areas of low-density urbanization (e.g. Civco et al., 2002). Other remote sensing
approaches have utilized night-time lights as a proxy for urban extent to iden-
tify low-density sprawl (Sutton, 2003; Cova et al., 2004). However, these remote
sensing approaches thus far arguably lack meaningful application to the processes
and patterns responsible for sprawl.

GIS-based studies of sprawl have tended to use the term more precisely than
has the remote sensing literature. A number of seminal sprawl-measurement studies
have occurred in recent years that utilized a primarily GIS demographic approach.
Several papers have utilized population density-based metrics to provide cross-
comparisons and rankings for multiple metropolitan areas within the USA (Fulton
et al., 2001; Nasser and Overberg, 2001; Lopez and Hynes, 2003). Many of these
approaches utilize US Census Bureau data for MAs, which consists of the coun-
ties with population and commuting ties to a major city. Other studies have used
the US Census Bureau’s UAs, which are incorporated areas and census designated
places of 2500 or more persons. For example, Galster et al. (2001) utilized US Census
metropolitan data variables for calculating their eight measures of sprawl. Theobald
(2001) developed metrics for rural sprawl based on population densities in census
tracts specifically outside of urban areas. Sprawl analytical methods employed thus
far have tended to utilize either a primarily vector GIS-based or primarily remote
sensing-based approach. We will come back to this point later in the chapter and unite
GIS and remote sensing as we explore the most recent progress in sprawl research.
However, we first must tackle one of the confounding issues in the sprawl discussion,
namely, what exactly is being discussed? How do people view the idea of sprawl?

6.2.1 Definitions of sprawl

Many books have been written and studies conducted on various aspects of urba-
nization. However, the term ‘sprawl’ is often incorrectly used as a synonym for
urban growth in general. The identification of sprawl as a specific type and
potentially problematic pattern of urbanization first arose in public discourse in the
middle of the twentieth century, when suburban subdivisions began to arise in areas
peripheral to existing urban locations (Hess et al., 2001). To the lay person the
term ‘urban sprawl’ is generally used to refer to spreading suburban development
patterns associated with repetitive housing tracts, strip shopping malls and increased
traffic congestion.
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In recent decades the term has tended to be more indiscriminately used. Any
development unwanted by a particular interest is often labelled as ‘sprawl’, regard-
less of the fact that it may actually embody characteristics of smart growth (the
catch phrase for urbanization that is well-designed and non-sprawling), such as
high-density, in-fill and mixed use. This inconsistent and sometimes contradictory
use of the term ‘sprawl’ creates a risk that the word will become hackneyed or
outright meaningless. In order for the phenomenon of sprawl to be adequately delin-
eated, analysed and managed, a more precise and universally agreed-upon meaning
needs to be established.

In the past several decades the interest in sprawl, and consequently the number
of research articles focusing on sprawl, has risen across multiple disciplines, from
public policy to environment to land management. The academic literature of urban
sprawl has itself sprawled into what is characterized by Galster et al. (2001) as
an ambiguous ‘semantic wilderness’. Galster et al. categorize the literature into six
groups of definitions that look at sprawl in the following ways: (a) sprawl defined
by example; (b) sprawl defined by aesthetic definition; (c) sprawl as the cause of an
unwanted externality; (d) sprawl as a consequence; (e) sprawl as selected patterns
of land development; and (f) sprawl as a process of development of land use. Any
use of geospatial technologies to assist in sprawl research will be more effective
if it can be based on a clear definition. While sprawl may have many non-spatial
socio-economic characteristics, remote sensing and GIS are spatial technologies and
therefore are most useful with a definition based on the spatial pattern, extent and
configurations that urbanization takes upon a landscape.

By most definitions, sprawl is a pattern of urbanization that carries with it
inherent problems, dysfunctions and inefficiencies (Burchell et al., 1998; Ewing,
1997; Johnson, 2001). The urban planning and policy literature provides a number
of references to sprawl that help to define it in terms of a specific spatial form of
urban growth. Reid Ewing (1997) offers a summary of 17 references to sprawl in the
literature as being characterized by ‘low-density development, strip development
and/or scattered or leapfrog development’. Ewing also uses a transportation compo-
nent to help define sprawl. He suggests that the lack of non-automobile access
is also a major indicator of sprawl. Burchell and Shad (1999) present a working
definition of sprawl as ‘low-density residential and nonresidential intrusions into
rural and undeveloped areas, and with less certainty as leapfrog, segregated, and
land consuming in its typical form’. Consensus is emerging that sprawl is complex
and cannot be characterized as a singular homogeneous phenomenon, but instead
has multiple possible characteristics. Furthermore, sprawl is different from place to
place (Burchell et al., 1998) and can be grouped into at least three different families
relating to urban sprawl, suburban sprawl and rural/exurban sprawl (Hasse, 2004;
Theobald, 2004). Many other papers refer to sprawl as urbanization with specific
spatial characteristics (Table 6.1).

The discourse on smart growth also helps to inform the development of sprawl
measures, because the spatial characteristics of smart growth are in some respects the
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Table 6.1 Spatial characteristics of sprawl found in the literature

Characteristic Description Selected references

High/inefficient land
consumption; low
population density

Low population density; high
levels of urbanized land
per person; rate of land
urbanization greater than rate of
population growth, especially in
fringe areas

Black, 1996; Downs, 1998;
Freeman, 2001; Galster et al.,
2001; Harvey and Clark, 1965;
STPP, 2000; Montaigne, 2000;
Hasse, 2003

Fringe development Development away from city
centre; rapid development of
open spaces on city boundary

Besl, 2000; Downs, 1998;
Galster et al., 2001; Katz and
Bradley, 1999

Lack of connectivity Arterial street systems; lack of
grid; lots of dead ends

Duany and Plater-Zyberk, 1998;
NRDC, 1996; Hasse, 2003

Leapfrogging;
scattered development

Development that skips over
empty parcels

Clawson, 1962; Mills, 1981;
Downs, 1998; Gordon and
Richardson, 1997b; Yeh and Li,
2001; Hasse, 2003

Separation of uses Different land uses
(employment, retail, residential)
are far apart; residential
development beyond edge of
employment and retail services;
lack of residential development
in city centre

Brown et al., 1998; Downs,
1998; Duany and Plater-Zyberk,
1998; Ewing, 1994, 1997;
Galster et al., 2001; Hasse,
2003

Lack of functional
open space

Lack of open space that
performs a useful public
function; ill-defined residual
space

Anonymous, 1999; Ewing,
1997, 1994; Hasse, 2003

Lack of non-auto
transportation
accessibility

Dispersed spatial patterns and
long distances to destinations
preclude use of public transit,
bicycle and pedestrian modes of
travel.

Downs, 1998; Ewing, 1997,
1994; Hasse, 2003

Aesthetics and
architecture

You know it when you see it.
Big-box retail; strip malls; no
sidewalks; excessively wide
roads. Large, disjointed
buildings set back from street,
highly articulated, rotated on
lots

Duany and Plater-Zyberk, 1998;
Gore, 1998; Koffman, 1999;
Kunstler, 1996; NRDC, 1996;
Hasse, 2003

Adapted and modified from Hess et al. (2001).
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mirror opposites of the characteristics of sprawl. According to the US Department
of Environmental Protection, smart growth principles promote development which:

� � � has mixed land uses; takes advantage of compact building design; creates a
range of housing opportunities and choices; creates walkable neighborhoods; fosters
distinctive, attractive communities with a strong sense of place; preserves open
space, farmland, natural beauty, and critical environmental areas; strengthens and
directs development towards existing communities; provides a variety of transporta-
tion choices; makes development decisions predictable, fair, and cost effective; and
encourages community and stakeholder collaboration in development decisions. (US
EPA, 2005)

The spatial patterns of smart growth and sprawl are inherently different and able to
be distinguished at various scales through appropriate geospatial methods.

6.2.2 Spatial characteristics of sprawl at a metropolitan level

A number of spatial-based measurements designed to capture various sprawl signa-
tures have evolved out of the characteristics of sprawl listed in Table 6.1. Torrens
and Alberti (2000) explored developing an empirical landscape framework to sprawl
measurement that focuses on the characteristics of density, scatter, the built envi-
ronment and accessibility. They outlined a set of metrics for quantifying these
characteristics that employ density gradients, surface-based approaches, geomet-
rical techniques, fractal dimensions, architectural and photogrammetric techniques,
measurements of landscape composition and spatial configuration, and accessibility
calculations. One of the seminal works of spatial measurements of sprawl at the
metropolitan level was developed by Galster et al. (2000), who define sprawl as ‘a
pattern of land use in an urbanized area that exhibits low levels of some combina-
tion of eight distinct dimensions: density, continuity, concentration, compactness,
centrality, nuclearity, diversity, and proximity’ (Galster et al., 2001). They oper-
ationalized six of these indicators to compare the characteristics of sprawl for 13
metropolitan areas in the USA. Figure 6.1 portrays the schematic diagrams from
Galster et al. (2001), demonstrating the spatial patterns captured by each metric for
sprawling and non-sprawling metropolitan areas.

A number of other studies have also taken a GIS-based approach to develop
sprawl measures for comparing metropolitan areas. Malpezzi (1999) analysed the
spatial distribution of population within census tracts of US Metropolitan Statistical
Areas (MSAs), calculating various indices of density as well as commuting patterns.
Ewing, Pendall and Chen (2002) developed an index for sprawl which combined
individual measures for: residential density; neighbourhood mix of homes, jobs and
services; strength of activity centres and downtowns; and accessibility of the street
network. Hess et al. (2001) developed a suite of seven spatial metrics for sprawl
that focused on land consumption, population concentration, separation of land
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Figure 6.1 Metropolitan-level spatial measure of sprawl. Galster et al. (2001) utilized
US Census metropolitan areas (MAs) and urbanized areas (UAs) data to operationalize six
measures of sprawl at the metropolitan level, including: (a) density; (b) concentration;
(c) clustering; (d) centrality; (e) nuclearity; and (f) proximity. Reproduced from Galster et al.
(2001) Wrestling sprawl to the ground: defining and measuring an elusive concept. Housing
Policy Debate 12, 681–717, courtesy of the Fannie Mae Foundation
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Figure 6.1 (Continued)
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uses/accessibility, and temporal patterns of sprawl. They calculated their metrics for
49 urbanized areas within the USA, finding little correlation between the measures,
suggesting that sprawl has a heterogeneous spatial nature on an interurban scale.

6.2.3 Spatial characteristics of sprawl at a submetropolitan level

The studies covered thus far have been conducted on a metropolitan scale, providing
a single value index to characterize certain aspects of sprawl for an entire urban
region. A comparison of the results for various cities is interesting and sometimes
surprising (alas, Los Angeles is not even close to being the most sprawling city in
the USA). However, some researchers question how much meaning to place on these
measures, as well as how valuable such measures are to inform policy decisions
(Hess et al., 2001; Hasse and Lathrop, 2003b; Song and Knaap, 2004). As argued
by Hasse and Lathrop (2003b), there is likely much more variation in sprawling
urbanization within any particular metropolitan area than exists between different
metropolitan areas. Some of the most recent sprawl analysis work has focused
on submetropolitan measures of sprawl. Song and Knaap (2004) derived a set of
neighbourhood-scale sprawl measures adapted from a planning support software
system called INDEX, developed by Allen et al. Song and Knaap operational-
ized five measures of urban form, including: street design and circulation systems;
density; land use mix; accessibility; and pedestrian access for 186 neighbourhoods
in metro-Portland, Oregon. Utilizing census blocks as a proxy for neighbourhoods,
Song and Knaap focused on two neighbourhoods, one that embodied the character-
istics of new urbanism (the so-called ‘smart growth’) and the other that represented
Portland’s average suburban tract. Song and Knaap also conducted a correlation
analysis of their measures, by the median age of neighbourhood housing stock, to
establish the change in sprawling characteristics of Portland over time.

At the submetropolitan level, the problematic characteristics of sprawl can be
more systematically identified and measured than at the metropolitan level. Hasse
(2004) created a set of 12 geospatial indices of urban sprawl (GIUS), designed
specifically to provide information about what characteristics are considered prob-
lematic or dysfunctional for an individual development (Table 6.2). The GIUS
measurements were utilized to evaluate and compare three recently constructed
housing tracts within a county on the rural/urban fringe of New Jersey. The GIUS
metrics are micro-measures of sprawl that provide quantitative information for
individual development tracts for three categories of characteristics: (a) land-use
patterns; (b) transportation patterns; and (c) environmental impact patterns. The
GIUS metrics employ various GIS-based spatial measurements of landscape para-
meters identifiable in land use, road networks and various environmental mapping
sources. Six of the GIUS measures are provided in schematic form for two scenarios
of a fictitious town; one scenario with sprawl and the second scenario with smart
growth (Figure 6.2).
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Table 6.2 Twelve tract-level GIUS measure of sprawl

Measure Description Calculation

1. Density Measures the intensity of land
utilization for a given tract

Areal size of tract divided by
number of housing units within
tract

2. Leap-frog
(Figure 6.2a)

Measures the degree to which
new tracts skip over vacant
parcels adjacent to previous
settlement

Straight line distance from new
tract to previous settlement

3. Segregated
land use

Measures the degree to which
new tracts are mixed with other
categories of urban land use

Count the number of different
categories of urban land use
within a 1500 ft buffer (i.e. 10
minute walk) to new tract

4. Regional
planning
inconsistency
(Figure 6.2b)

Indicates whether a new tract is
inconsistent with regional and
state plans

Tract is assigned a weighted
value dependent on its location
within a regional plan

5. Highway strip
(Figure 6.2c)

Indicates whether a new tract is
situated in strips fronting along
rural highways

Tract is overlaid with a 500 ft
buffer of rural highways

6. Road
infrastructure
inefficiency

Measures the inefficiency
of road infrastructure by
measuring road length, number
of intersections and cul-de-sacs
of new development tracts

Length of road, number of
intersections and number of
cul-de-sacs are summed by tract
and divided by the number of
units within the tract

7. Transit
inaccessibility

Measures the degree to which
non-auto modes of travel are
accessible to new tracts

Calculates road distance from
tract to pedestrian/bicycle
routes and public transportation
stops

8. Community
node
inaccessibility
(Figure 6.2d)

Measures how scattered a new
tract is from important
community centres such as
schools, libraries, fire/rescue,
police, recreational facilities,
etc.

Calculates road distance from
tract to a set of nearest
community nodes

9. Consumption
of important
land resources
(Figure 6.2e)

Measures the degree to which
new tracts consume important
agricultural and natural land
resources

Calculates the area of prime
farmland, core forest habitat
and wetlands displaced by tract
and divides by the number of
units
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10. Sensitive
open space
encroachment

Measures the proximity of new
tract to sensitive open space,
including documented
threatened/endangered wildlife
habitat and preserved farmland

Calculates the distance of tract
to nearest wildlife habitat and
preserved farm parcels

11. Impervious
surface
coverage
(Figure 6.2f)

Measures the amount of
impervious surface imposed
from a given tract

Calculates the total area of
impervious coverage of a tract
and divides by the number of
units within the tract

12. Growth
trajectory

Measures the pace of growth in
terms of new development and
locality size and remaining
available land

Calculates the percentage of
urban spatial increase in terms
of: (a) previous urban
extent; (b) municipal size;
(c) remaining available land

Adapted from Hasse (2002).

The GIUS measures were operationalized for Hunterdon County, New Jersey, for
all housing tracts constructed county-wide between 1986 and 1995 (Hasse, 2004).
To demonstrate the functionality of the GIUS measures, three development tracts
were selected that epitomized the most sprawling, average and smartest-growing
development that occurred, as measured by the GIUS metric (Figures 6.3a–c).
The study established that many of the spatial characteristics of sprawl can be
meaningfully quantified and compared at the micro-level of individual housing
tracts (Figure 6.4).

6.3 Integrating remote sensing and GIS for sprawl
research

While Hasse’s GIUS sprawl indices (2004) are primarily spatial-based measure-
ments and therefore might be placed within the GIS- based camp of sprawl analysis,
many of the data utilized by Hasse were originally derived from remote sensing-
based data sources, such as digital orthophotography, making this work a substantial
integration of remote sensing and GIS. Many of the GIUS measures could be
adapted to other platforms of remote sensing- and raster-based analysis.

A number of other recent works in sprawl research rely more substantially on
combining both GIS and remote sensing technologies and techniques. Analytical
approaches that integrate remote sensing and GIS technologies are able to provide
a more robust and sophisticated line of attack than either technology can provide
in isolation. Software advances are facilitating the ease with which researchers
are able to integrate vector-based GIS, raster-based GIS and remote sensing tech-
niques. There are substantial benefits to integrating the physical land use/land cover
information provided by remotely sensed data and the growing body of socio-
economic and infrastructure information available for GIS.
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Figure 6.2 Development tract-level spatial measures of sprawl. Hasse (2004) developed 12
geospatial indices of urban sprawl (GIUS) at the development tract level. These conceptual
schematic diagrams illustrate selected GIUS measurement for a fictitious town that grows
with a smart growth pattern (left) and sprawl pattern (right). The measurements selected
include: (a) leapfrog; (b) regional planning inconsistency; (c) highway strip; (d) commu-
nity node inaccessibility; (e) land resource impacts; and (f) impervious surface coverage.
Reproduced with permission of the University of Wisconsin Press from Hasse, J.E. (2004)
A geospatial approach to measuring new development tracts for characteristics of sprawl.
Landscape Journal: Design, Planning and Management of the Land 23, 1–4
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Figure 6.2 (Continued)
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Figure 6.3 Selected development tracts for demonstrating GIUS. These three tracts of
suburban development were selected from a countywide GIUS analysis of new development.
The tracts have been named for the municipality in which they were located: (a) Califon;
(b) Readington; and (c) Alexandria. Each tract is delineated by a solid white line and a
dashed 1500 ft pedestrian accessibility buffer. Reproduced with permission from Hasse, J. E.
(2004) A geospatial approach to measuring new development tracts for characteristics of
sprawl. Landscape Journal: Design, Planning and Management of the Land 23, 1–4

Figure 6.4 Normalized GIUS measures for three selected tracts. This graph depicts the value
of each GIUS metric in standard deviations from the county average. While the three selected
tracts effectively demonstrate lower than average, average and higher than average sprawl
values in the county for most of the variables, the measure are not highly redundant. Many
other development tracts within the county had a broad mixture of values. Reproduced from
Hasse, J. E. (2002) Geospatial Indices of Urban Sprawl in New Jersey. Doctoral Dissertation,
Rutgers University, New Brunswick, NJ, USA; 224 pp.
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The most basic category of GIS integration with remote sensing is land
use mapping derived from remotely sensed sources. For example, a number of
sprawl-related studies conducted in New Jersey (Hasse and Lathrop, 2001, 2003a;
MacDonald and Rudel, 2004) utilize the state’s highly detailed digital land use/land
cover database, which was delineated statewide from on-screen digitizing of digital
orthophotography (Thornton et al., 2001). While the analysis relied heavily on
vector-based GIS techniques to measure temporal landscape changes, the data layers
required for the calculations included land use/land cover, impervious surface, fresh
water wetlands, and prime farm soils. Each of these data layers used remotely
sensed imagery as its primary source.

Some approaches to sprawl research have utilized a primarily remote sensing
approach augmented by various ancillary GIS data or GIS spatial methodology.
For example, Yeh and Li (1998, 2001) used remotely sensed data to measure and
monitor the degree of urban sprawl for cities and towns in China, using an entropy
measure of dispersal along roads. Sudhira et al. (2004) integrated IRS 1C and LISS
multispectral imagery with Survey of India (SOI) topo-sheets to develop temporal
metrics of sprawl in Karnataka, India. While these studies are somewhat ambiguous
in making a clear distinction between specific characteristics of sprawl and urban
growth in general, they demonstrate the utility of augmenting large-scale remote
sensing platforms with ancillary GIS data, such as overlaying vector-based roads
with digital imagery to better evaluate urban processes related to sprawl.

A more sophisticated analysis of sprawl, utilizing the European CORINE land
cover dataset, which was compiled from multiple satellite imagery and ancillary
GIS sources, was conducted for 15 cities within Europe (Kasanko et al., 2005).
Five indicator sets were developed to shed light on whether European cities were
experiencing a dispersion of population density, by examining residential land
use, land taken by urban expansion, population density and urban density. The
team found that European cities were becoming more dispersed in general but that
there were also significant differences in the densities of growth between southern,
eastern and north-western cities.

One of the problematic characteristics of sprawl is the wasteful consumption
of important natural resources. Sprawling development patterns impose a large
ecological footprint by moving a relatively small number of residences into large-lot
housing. The integration of remote sensing and GIS can facilitate the study of natural
resource impacts attributable to sprawl. Hasse and Lathrop (2003a) developed a set
of ‘land resource impact’ (LRI) indicators that measured the per capita population
impact of sprawling urbanization on five specific critical land resources, including:
(a) urban density (i.e. efficiency of land utilization); (b) prime farmland loss; (c) core
forest habitat loss; (d) natural wetlands loss; and (e) impervious surface cover gain.
By integrating demographic census data with landscape change data, the authors
were able to demonstrate impacts on a per-capita basis, in order to illustrate that
sprawling development patterns consume more resources for each person provided
with housing than do smart growth patterns. The five measures were calculated
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Figure 6.5 Land resource impact indicators of sprawl in New Jersey. Sprawl consumes
significant quantities of important land resources including: prime farmland, forest core
habitat, and freshwater wetlands. These maps depict the municipalities that: (a) lost the
greatest percentage of these resources; (b) lost the greatest amounts of the resource per
person added to the population; and (c) have both high percentage and per capita loss.
Reproduced with permission from Hasse, J. E. and Lathrop R. E. (2003b) Land resource
impact indicators of under sprawl. Applied Geography 23, 170. ©Elsevier (2003)

on an individual municipal basis and then combined into an index that provides
an overall indication of the municipalities in which sprawl is having the greatest
impact on critical land resources (Figure 6.5). The data utilized for this analysis
were derived from remotely-sensed sources, such as orthophotography for the land
use/land cover and wetlands delineation (Thorton et al., 2001). The prime farm-soils
soil maps were generated by the US Natural Resources Conservation Service on a
county basis, and originally derived from aerial photography, geological maps and
in-field samples. Lathrop (2004) updated the statewide analysis by incorporating
new development polygons screen-digitized from SPOT imagery.

The approach to sprawl that focuses on the physical environment also includes
a substantial literature of ecology-based studies that often employ remote sensing
techniques to characterize the degree of urban intensity within a landscape ecology
context (Jensen et al., 2004; Forys and Allen, 2005; MacDonald and Rudel, 2005;
Theobald, 2004). The FRAGSTATS software package (McGarigal and Marks,
1995), widely used to generate landscape-based metrics for landscape ecology
(Gustafson, 1998), is now being applied to urban analysis. Herold et al. (2005)
explored a framework for combining remote sensing with these landscape ecology
metrics in order to improve the analysis and modelling of urban growth and land
use change. The authors demonstrated through a pilot study of the Santa Barbara,
California, coastal area that the combination of remote sensing GIS-based spatial
metrics can contribute an important new level of information to urban modelling and
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urban dynamic analysis. This line of landscape-scale (i.e. tract-level or patch-level)
GIS-remote sensing integration for urban analysis holds great potential for moving
beyond some of the past limitations of modelling urban dynamic process and
specifically urban sprawl.

Meaningful integration of remote sensing data with spatial metrics for measuring
sprawl is also beginning to occur in some of the urban planning and geography
literature. The previously discussed work of Galster et al. (2001; Figure 6.1) broke
new ground in developing sprawl spatial measurements by converting census-based
GIS data into a grid. The Galster study developed a number of spatial metrics
with some similarities to landscape ecology metrics by creating half-mile and
1-mile grids of the census data polygons. Wolman et al. (2005) argued that the
methodology of Galster et al. (2001) was limited in several respects, including its
inability to compensate for land that was impossible to develop when calculating
various density measurements. Wolman improved on Galster et al.’s methods by
integrating land use data from the US Geological Survey’s (USGS) National Land
Cover Database (NLCDB). The NLCDB is a nationwide land-use map derived from
remotely sensed satellite imagery at 30 m resolution. Wolman’s integration of land
cover data demonstrably changed Galster et al.’s density measures from as little as
2.6 to as much as 27.1 for selected metropolitan areas, although very little change in
rank occurred from Galster et al.’s original study. The integration of remote sensing
for updating land use/land cover information in sprawl analysis will continue to
mature as sprawl metrics are refined and the ease with which timely ground data
can be added to the analysis improves.

One of the problems interfering with a more substantial use of geospatial tech-
nologies (especially remote sensing) within urban research is that many of the
metrics and analyses thus far developed have had a poor relationship to urban spatial
theory and/or application in policy making. The development of sprawl measure-
ments that can take advantage of the benefits of integrating remote sensing and GIS
needs to be applicable to planners in the trenches. One of the places in which there
is great potential for geospatial science, landscape metrics and planning and policy
to mutually enhance one another is the topic of sprawl. Developing better digital
representations of the urban process requires exploration of the urban process at its
most fundamental scale.

6.4 Spatial characteristics of sprawl at a building-unit
level

One area of research that holds promise for advancing urban analysis and urban
sprawl also opens new avenues for integrating remote sensing with GIS. By
breaking down urban processes to the most fundamental units, the basic building
blocks of urban organization can be reproduced within a digital environment.
‘Urban atomization’ entails rethinking how to represent and model the urban
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phenomenon within a GIS at the most fundamental urban unit. Typically, urban
social analysis has tended to occur within a vector GIS digital environment, while
environmental/landscape analysis has tended to utilize raster-based approaches.
While each method has its advantages and disadvantages for modelling land-
scape structure, there are nevertheless still many limitations with both raster and
vector analytical approaches related to issues of scale, temporal change, data
conversion and ecological fallacy/modifiable areal unit problem (MAUP) Open-
shaw 1984a, 1984b) among many others. It can be awkward at best to represent
many aspects of urban processes in either a solely-raster or solely-vector data
platform. In order to move beyond these limitations, it may be advantageous to
represent urban phenomena by reducing urban structure down to the smallest basic
elements.

Instead of trying to fit the urban process into raster cells or polygons, researchers
are asking how to best model the fundamental components of the urban process
within state-of-the-art geospatial digital environments. Considering that the urban-
ization process consists of the nexus between the physical built environment and
social processes, a robust GIS urban modelling environment should be built upon the
most basic fundamental unit or smallest elements by which the urbanization process
functions. Demographic data are often available to researchers at the metropolitan,
neighbourhood, census block and zip code level, making these spatial units logical
choices for analysis of sprawl thus far highlighted throughout this chapter. In
contrast, the social units by which demographic data are collected through surveys
and censuses are often the individual person living within the city, the family and
the household, but these data are protected from public disclosure due to issues of
privacy. The urban process is complex and dynamic and consists of a combination
of the physical urban structure and the social structure of the people living in and
using the city. Since individuals, families and households are highly transitory, it
can be argued that building units emerge as the logical fundamental or smallest
solid ‘atom’ of urban spatial structure.

By modelling urban spatial structure as elemental building units that exist at a
particular time and location in space, building units become the ‘urban atoms’ of
a data structure that can then be organized and combined into a nested hierarchy
of functional entities at the appropriate scale for the phenomenon of interest. To
use a biological analogy, building units can be viewed as the most basic cells
of urban structure. Neighbourhoods can be conceptualized as logical groupings
of building unit cells into discrete functional areas or the ‘organs’ of the urban
organism. Neighbourhoods linked together through transportation and infrastruc-
ture networks become the functional urban systems. The city itself combines the
various neighbourhoods and systems into the complete functioning (or sometimes
dysfunctioning) urban organism.

New GIS data structures, such as the ESRI Geodatabase, hold potential for inno-
vative nested hierarchal approaches to urban geospatial data modelling. Individual
components of the atomic urban data model can be modular and object-orientated,
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so that each building unit can ‘know’ its own location, statistical summaries of the
people living/employed in the building, the land area occupied and the building
floor area, available social and health-related data, etc. Object-orientated building
units could also contain information about their own date of creation and thus be
incorporated into temporal modelling of urbanization. Urban data structure could
become hierarchical, meaning that, depending on the scale of interests, building units
could be represented as points, polygons or triangular irregular networks (TINs),
and multiple units could be grouped into regions to represent a neighbourhood or
interpolated into a surface to visualize particular variables, etc. Atomic urban data
structure will also facilitate new approaches to integrating remote sensing data with
object-orientated GIS data, substantially advancing all branches of urban analysis,
including sprawl.

Work is just beginning on an urban atomization approach that integrates remote
sensing with building unit locations. Mesev (2005) is exploring the use of postal
points, which are GPS building location points generated by the Ordnance Survey of
Great Britain that map the building centroid of commercial or residential buildings
with postal delivery. This dataset is updated four times a year and provides a highly
accurate spatial inventory of building units. Mesev integrates these postal points
with IKONOS imagery to examine spatial patterns of residential neighbourhoods
and commercial areas. Groups of these points were used to characterize the spacing
and arrangement of residential and commercial buildings, using nearest-neighbour
and linear nearest-neighbour indices. Although the pilot analysis explored only two
UK cities for two relatively non-complex variables, including density (compactness
vs. sparseness) and linearity, Mesev argues that multiple avenues of research can
emerge, such as automated pattern recognition through building unit integration
with remote sensing imagery.

6.5 A practical building-unit level model for
analysing sprawl

Hasse and Lathrop (2003b) utilized an urban atomization approach to evaluate
several characteristics of sprawl by measuring sprawl characteristics for indi-
vidual housing units. Hasse and Lathrop contended that a housing-unit approach
to measuring sprawl is the most meaningful because each house can have a
different performance of sprawl and smart growth. By generating measures at the
atomic (housing-unit) level, Hasse and Lathrop were able to rescale the data up to
any geography of interest, such as a housing tract, census block or municipality.
This effectively solved a number of rescaling and overlay issues and limita-
tions. Hasse and Lathrop’s method for locating each housing unit was accom-
plished by intersecting remote sensing-derived urban land use/land cover classified
regions with digital parcel maps and generating centroids for the resulting polygons
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Figure 6.6 Delineation of housing unit locations through the integration of GIS and remote
sensing. Household locations are delineated as vector point locations through a multi-step
process: (a) delineation of new urbanization (image classification or heads-up digitizing);
(b) intersection of new development patches with digital parcel map; (c) polygon centroids
estimate location of new housing unit; (d) generation of various sprawl parameters, e.g.
density, leapfrog, segregated land use, highway strip, and community node inaccessibility;
(e) assignment of various sprawl parameters to housing unit point theme; (f) summary
of individual housing unit metric values by regions of interest, such as census tracts or
municipalities



6.5 A PRACTICAL BUILDING-UNIT LEVEL MODEL FOR ANALYSING SPRAWL 137

(Figure 6.6). This technique is particularly necessary in rural areas, where housing
unit locations are unlikely to be aligned with the tax parcel’s physical centroid.
The resulting point dataset is an accurate estimate of each housing unit location
(Figure 6.7).

Figure 6.7 Housing unit location automation. This image depicts an orthophoto of one
newly developed housing tract. The thick lines delineate the ‘patches’ of new urban growth
as classified by the land use/land cover dataset. The thin lies delineate the property parcel
lines. The target symbol denotes the automated centroid location estimated for each new
housing unit. Sprawl measurements are calculated for each housing unit centroid
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Although most of the 12 GIUS measures developed on a tract-level can be
applied to the housing-unit scale, five measures are described here in detail,
including: density, leapfrog, segregated land use, community node inaccessibility
and highway strip, The calculations are made using various GIS techniques and
the corresponding values are assigned to each new housing unit for the set of five
selected metrics. The data are then scaled-up to municipality by summarizing the
housing points within each municipal boundary, in order to provide a ‘sprawl report
card’ for recent growth for each locality. The following section details the Hasse
and Lathrop housing unit level methodology (from Hasse and Lathrop, 2003b).

6.5.1 Urban density

The urban density indicator provides a measure of the amount of land area occupied
by each housing unit (Figure 6.8a). The municipal urban density (UDmun) was
calculated by summing the land areas for each new housing unit and dividing
that sum by the total number of units within each municipality, as depicted in
equation 6.1. Lower density indicates a sprawling signature for the density measure.

UDmun =
∑

DAunit∑
Nunit

(6.1)

where:
UDmun = urban density index for new urban growth within a municipality,
DAunit = developed area of each unit, and Nunit = number of new residential

units.

6.5.2 Leapfrog

Tracts of urban growth that occur at a significant distance from previously existing
settlements are considered ‘leapfrog’ (Figure 6.8b). The leapfrog indicator was
calculated by measuring the distance from the location of each new housing unit
(at time 2) to previously settled areas (at time 1). The previous settlements were
delineated as tracts of urban land use existing in time 1 that corresponded to
designated place names on USGS quadrangle maps or existing tracts larger than
50 acres (20.23 hectares). This process filtered out smaller non-named tracts of
time 1 urban areas that had already leapfrogged from settled areas. A straight-
line distance grid was generated from these ‘previously settled’ tracts and the grid
value was assigned to each new housing unit. The housing-unit leapfrog value
was then scaled to the municipal leapfrog index (LF mun) by summarizing the
leapfrog field value of the housing-unit point layer by municipality, as depicted
in equation 6.2. New growth that occurs at large leapfrog distances is considered
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Figure 6.8 Conceptual diagrams for housing unit sprawl measures. Sprawl measurements
are conducted for individual housing units for selected characteristics, including: (a) density;
(b) leapfrog; (c) segregated land use; (d) highway strip; and (e) community node inacces-
sibility. Other sprawl characteristics are also measurable at the housing-unit level, which
facilitates scaling to any geography of interest
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sprawling.

LF mun =
∑

Dlf unit∑
Nunit

(6.2)

where LF mun = leapfrog index for new urban tracts within a municipality, Dlfunit =
leapfrog distance for each new unit, and Nunit = number of new residential
units.

6.5.3 Segregated land use

Segregated land use consists of large tracts of similar land use that requires use of
the automobile for basic daily destinations (Figure 6.8c). Since mixed land use
areas may look segregated at a micro-level, the definition of segregated land use
employed here is building units that are located beyond reasonable walking distance
to multiple other types of urban land uses. In order to accomplish this, the mix
of land use is examined within a 1500 ft (457.2 m) pedestrian distance (the typical
distance a pedestrian will walk in 10 minutes; Nelessen, 1995). Housing units
within walking distance to multiple other types of urban land uses are considered
mixed, while housing units with only other housing within the pedestrian distance
are considered segregated.

The segregated land use metric was calculated by converting the vector-based
‘urban’ land use/land cover data layer to a grid. The dataset included 18 different
classes of urban land use, some of which were recoded to better reflect the segre-
gated land use analysis. A neighbourhood variety calculation was performed on
the gridded urban land use, utilizing a radius of 1500 ft (457.2 m) to represent the
pedestrian distance. This produced a grid surface where every cell was enumerated
according to the variety or mixture of different urban land use categories within the
search radius.

Since the other sprawl indicator measures produce output in which higher
values indicate higher sprawl, the mixed land use surface grid was inverted
to a segregated land use value, where higher numerical values represent a
greater indication of the non-mixed (i.e. segregated) characteristic associated
with sprawl. This was accomplished by subtracting the mixed-use grid from a
constant grid with a value equal to 1 plus the most mixed grid cell occur-
rence (in the pilot study the maximum mixed land use occurrence was 7). The
value of the segregated land use grid for a 1500 ft radius was then assigned
to each housing unit point. The municipal-level segregated land use index
(SLmun) was calculated by averaging the segregated land use value of each new
housing unit by municipality, as depicted in equation 6.3. New building units
that have a higher segregated land use value are considered sprawling for this
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measure.

SLmun =
∑

Segunit∑
Nunit

(6.3)

where SLmun = segregated land use indicator by municipality, Segunit = X – number
of different developed land uses with 1500 feet (457.2 m), X = 1 plus the maximum
land use mix in a given dataset (note: the baseline land use mix will vary by
dataset), and Nunit = number of new residential units.

6.5.4 Highway strip

The highway strip development component of sprawl is usually typified by fast
food restaurants and retail strip malls, but can also include single-family housing
units lining rural highways (Figure 6.8d). However, this analysis focuses only on
residential growth. As developed, the highway strip index is a binary measure.
Residential units are designated highway strip if they occur along rural highways
outside of town centres and the associated urban growth boundaries. New housing
units within the delineated rural highway buffer are considered sprawling for this
measure.

For this study, the highways were delineated from the dataset as all non-local
roads (i.e. county-level highway or greater) outside of designated centres of the
New Jersey State Plan. The buffer was set at 300 ft (100 m), a common depth for a
1 acre (0.405 ha) housing lot. Housing units that fell within the buffer were coded
to 1 and units outside the buffer were coded to 0. The municipal level highway strip
index (HSmun) was calculated by summing the number of new residential units that
occurred within the highway buffer and Normalizing by the total number of new
units that were developed within the entire municipality, as depicted in equation 6.4.
This provided, in essence, a probability measure of highway strip occurrence for
each municipality. Municipalities that experienced a higher ratio of highway strip
development were considered more sprawling for this measure than municipalities
with lower ratios.

HSmun =
∑

HBunit∑
Nunit

(6.4)

where HSmun = highway strip indicator by municipality, HBunit = residential unit
within the 300 ft highway buffer, and Nunit = number of new residential units.

6.5.5 Community node inaccessibility

The community node inaccessibility index measures the average distance of new
housing units to a set of nearest community nodes (Figure 6.8e). The centres chosen
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in this analysis included schools, libraries, post offices, municipal halls, fire and
ambulance buildings and grocery stores. The centres were chosen to reflect likely
destinations for any residents within a community, as well as the availability of
data for centre locations. The set of community nodes is intended to be an index,
not an exhaustive set of destinations. It is argued that these selected destinations are
reasonable proxy for destinations overall and thus provide valuable insight into the
accessibility, as measured by road distance from each housing unit. Each selected
community destination (i.e. node) was identified in the county-wide digital parcel
map, utilizing the owner information as well as interpretation of digital orthophotos
and hard-copy county maps.

New housing units were analysed for their road network distance to the commu-
nity nodes, utilizing a cost/distance calculation over a gridded roads and urban
mask. Road network distances were generated for each individual selected commu-
nity node type to all housing units. The individual community node distance values
were averaged into a single community node distance value. The municipal-level
community node inaccessibility index (CNImun) was calculated by summarizing the
new housing unit community node distance values by municipality as depicted in
equation 6.5. Sprawling land use patterns have significantly higher average road
distance between new units and the set of selected community nodes.

CNImun =
∑

Dcnunit∑
Nunit

(6.5)

where CNImun = community node inaccessibility index by municipality, Dcnunit =
average distance of new residential unit to the set of community nodes, and
Nunit = number of new residential units.

6.5.6 Normalizing municipal sprawl indicator measures

Each of the five individual sprawl metrics highlighted here reflects a particular
geospatial characteristic of urban growth and provides useful analytical information.
However, the measures are not standardized, but reflect an appropriate measurement
unit for each particular trait. For example, some measurements such as leapfrog
are linear distances, some such as density are areal measures and yet others such
as segregated land use are in numbers of land uses. The diversity and range
between these measurement units precludes direct comparison between metrics.
Normalization of the measures through percentile rank, however, results in index
values that can be cross-compared. Once the individual sprawl measures were
normalized to percentage ranks, they were summed together to produce a single
cumulative summary measure of sprawl, or what Hasse and Lathrop characterize
as a meta-sprawl indicator for each municipality. Housing unit-level calculations
facilitate a new approach for rescaling data. While the authors demonstrate rescaling
to the municipal level (an appropriate scale due to local zoning control in New
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Jersey), summary sprawl measures could be calculated for any geographical extent
of interest by summarizing the individual housing units by any desired geographical
unit, such as census tract, county or metropolitan area.

This case study demonstrates that the development of a housing unit-level urban
database promises to provide a more robust means of analysing urban form for char-
acteristics of sprawl and smart growth than previous urban data models. However,
the development of such building unit-level databases for extensive spatial areas
is challenging. Most of the socio-economic data that is available for analysis is
aggregated to larger geographic areas, such as a census block, commuter zone or zip
code. Digital parcel maps still do not exist for many areas. Furthermore, identifying
the location of individual housing units on a metropolitan scale is a formidable
task, resulting in large databases of potentially hundreds of thousands of records.
Techniques of data compression, indexing and random sampling of housing-unit
data may need to be developed in order to make the data more manageable for
larger spatial scales.

Nonetheless, the potential advantages of analysing urban form at its atomic level
warrant the effort of developing building-unit based urban geospatial databases. An
urban atomic database model also has the potential for innovative integration of
remote sensing. Integration can be potentially facilitated in data development, data
enhancement and data updating. For example, in data development, building-unit
point location may be accomplished through integrating remote sensing imagery
with automated address matching of a regional telephone directory. Points could be
generated by the GIS address-matching geo-location algorithm and then adjusted
for increased spatial accuracy by an automated remote sensing image recognition
system. Traditionally, GIS data have been utilized as ancillary data within a remote
sensing environment, such as overlaying roads and census tracts to enhance classifi-
cation accuracies. The urban atomization model turns this relationship around, where
the point location is enhanced by remotely sensed data as ancillary information. The
possibilities for integrating remote sensing with GIS through an urban atomization
approach extend well beyond the analysis of sprawl. Nonetheless, urban atom-
ization for sprawl analysis, in particular, holds significant potential for advancing
the delineation, characterization and analysis of the phenomenon of sprawl at the
elemental scale at which it occurs, one house at a time.

6.6 Future benefits of integrating remote sensing and
GIS in sprawl research

The interest in sprawl from many stakeholders and agencies will continue to grow,
due to the broad implications that continued patterns of sprawl will have for ecology,
society, economics and politics. While there has been substantial advancement in
the identification, characterization and analysis of sprawl over the past several
decades, the research is still arguably in an early stage. This chapter has highlighted



144 CH06 IDENTIFYING SPRAWL AT THE BUILDING-UNIT LEVEL

some of the ways in which the geospatial technologies of remote sensing and GIS
are being utilized to study the phenomenon of sprawl on multiple levels, from the
metropolitan level down to the building-unit level. The integration of remote sensing
and GIS is both advancing and being advanced through this sprawl research.

The building unit-level analysis as highlighted in the second half of this chapter
holds particular promise for benefiting from the joining of GIS and remote sensing,
because it allows for new avenues of integration between the physical land cover
information that remote sensing imagery can provide and the socio-economic infor-
mation that is more readily available for GIS. A building unit-level integration
of GIS and remote sensing is not only of interest from an academic perspective
but also from a policy perspective, because it performs at a level that can provide
meaningful information to the stakeholders of the urbanization process.

Ultimately, this is where geospatial research can make its greatest contribution
to the understanding and management of sprawl. The integration of remote sensing
and GIS can assist in developing sprawl analytical methods that are employable to
academics, policy makers and multiple other stakeholders. By integrating the two
platforms, the combined strengths of each can overcome a number of limitations
of utilizing remote sensing or GIS separately. Integration will lead to progress in
urban research in areas such as image recognition, object-orientated urban feature
modelling and near-real-time land data updating. Furthermore, this research can lead
to development of a better urban typological system that objectively and justifiably
characterizes urbanization patterns into appropriate categories, based on specific
goals of public interest, such as land use efficiency, transportation, water quality
and environmental health.

Considering growing population pressures, the continuing pace of urbanization
and the impacts associated with modern patterns of sprawl, the need to study
sprawl will continue for the foreseeable future. The integration of remote sensing
technologies and GIS will play a significant role in advancing the understanding
of the phenomenon of sprawl, while hopefully providing the tools for steering
urbanization towards less problematic forms.
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Remote sensing applications in
urban socio-economic analysis
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7.1 Introduction

Recently, urbanization has become a global phenomenon because of unprecedented
world population growth and rural-to-urban migration. Currently, approximately
50% of the world’s people reside in urban areas, and it is estimated that by 2030
about 60% of the total population will be urban dwellers (United Nations, 2002).
Associated with this dramatic urban growth and urban sprawl, the geographical
extents of built-up areas are expanding rapidly. In the USA, for example, approx-
imately 10 million hectares of non-federal rural lands have been developed for
urban land uses during 1982–1997 (US Department of Agriculture, 2000). Due
to this rapid urbanization, scientists and urban planners are facing many chal-
lenges, including the loss of greenfield sites and increment of brownfield sites,
shortage of utilities and resources, aggravated traffic congestion, and non-point
environmental pollution. These problems associated with urbanization are severely
impacting quality of life and economic development in urban areas (Black, 1996).
In order to address these problems, it is imperative to understand and monitor urban
systems, especially urban land use changes, socio-economic activity patterns and
underlying processes, and the dynamic interactions between human activities and
urban physical environments.

Understanding and monitoring urban systems requires both reliable data sources
and robust analytical methods (Yang, 2003). Traditionally, surveying and mapping
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methods have been the major approaches for obtaining urban information. These
methods, however, are labour-intensive and cannot provide timely information.
Geographic information systems, together with aerial photographs, bring new data
sources and techniques for urban information collection, storage, management and
analysis. Census data, as an example, have been widely applied in neighbourhood
analysis, transportation planning, urban environmental justice evaluation and popu-
lation segregation studies (Wong, 1996; Peng et al., 1997; Sui, 1999). Other GIS
data, such as land parcel inventory, employment information, crime location data
and public health information, are regularly collected and applied in various urban
socio-economic analyses. In addition to GIS data, aerial photographs are frequently
considered as references for urban information acquisition, including road networks,
land parcels and building information. Other remote sensing data and associated
image processing technologies, however, have been more or less ignored in urban
analysis (Carlson, 2003). One major concern of urban planners is the coarse spatial
resolution of remotely sensed data. As an example, the spatial resolutions of most
popular remote sensing imagery, such as Landsat TM and ETM+, SPOT, MODIS
and AVHRR, vary from 20 m to 1 km. It is almost impossible to identify a house
or a road segment from imagery with such coarse resolutions. The other concern is
the applicability of remote sensing technologies in urban analysis. Urban planners
may not recognize the potential contributions of remote sensing in urban analysis
and are not familiar with the advancement of remote sensing technologies (Carlson,
2003). This chapter provides a comprehensive review of remote sensing applica-
tions in urban analysis, with special attention to urban socio-economic studies.
The structure of this chapter is as follows. Section 7.2 discusses the principles of
urban socio-economic studies using remote sensing technologies, and summarizes
these studies into two groups: (a) socio-economic information estimation; and (b)
socio-economic activity modelling. These two groups of studies are extensively
reviewed in sections 7.3 and 7.4, respectively. In particular, section 7.3 reviews
the applications of remote sensing technologies in socio-economic information
estimation, and section 7.4 discusses the integration of remote sensing and GIS
information for socio-economic activity modelling. Through reviews of current
studies, the advantages and limitations of applying remote sensing technologies in
urban socio-economic studies are given in section 7.5. The chapter is concluded in
section 7.6.

7.2 Principles of urban socio-economic studies using
remote sensing technologies

Remote sensing technologies have been successfully applied for estimating physical
environments of urban areas. In particular, urban land use land cover informa-
tion and their change patterns have been identified using remote sensing techno-
logies with reasonable accuracy (Ward et al., 2000; Civco et al., 2002; Liu and
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Lathrop, 2002; Guindon et al., 2004). Moreover, the biophysical composition of
urban environments, including vegetation, impervious surface and soil, has been
successfully generated following the vegetation–impervious surface–soil (V–I–S)
model proposed by Ridd (1995). In particular, urban vegetation distribution has
been estimated by Small (2001, 2002), using spectral mixture analysis models. In
addition, urban impervious surface fraction has been estimated using a number of
models, including spectral mixture analysis (Phinn et al., 2002; Wu and Murray,
2003; Wu, 2004), artificial neural network (Flanagan and Civco, 2001) and regres-
sion tree analysis (Yang et al., 2003). Moreover, urban surface temperature and the
associated urban heat island effects have been studied extensively (Lo et al., 1997;
Weng et al., 2004).

While urban physical environment studies provide valuable information, urban
socio-economic activities and their underlying forces are more interesting for
urban planning and management. Population segregation, especially its patterns
and underlying forces, as an example, has been an important topic in urban
economic and social studies (Farley and Frey, 1994). Therefore, scientists have
recently attempted to relate remote sensing information to socio-economic acti-
vities. However, remote sensing, as a means of acquiring information about the
physical environment, cannot be directly applied for estimating or modelling
socio-economic activities. The relationship between remote sensing information
and socio-economic activities may be conceptualized in the theory of social
space (Lo, 1997). In detail, socio-economic activities, conceptualized as socio-
cultural environment, represent people’s understanding of and reactions to phys-
ical environments. Therefore, socio-economic activities may be closely related
to physical environments, which have been successfully estimated from remote
sensing imagery. The recent developments of socio-economic research using remote
sensing technologies can be subdivided into group 1, socio-economic informa-
tion estimation, and group 2, socio-economic activity modelling. In group 1,
the objective is to estimate socio-economic information of interest through
regressing implicit or explicit urban morphological (physical) factors generated
from remotely sensed data (see Figure 7.1). Figure 7.1a illustrates the process of
socio-economic information estimation directly from remotely sensed data. In this
process, urban physical environments are utilized implicitly. Figure 7.1b shows
the steps of estimating urban socio-economic characteristics through regressing
urban physical information obtained from remote sensing imagery. In group 2,
the estimated urban morphological environments are utilized as environmental
factors, together with other environmental or socio-economic information in GIS
format, to model socio-economic activities (see Figure 7.2). The following two
sections review these two groups of studies. Section 7.3 reviews socio-economic
information estimation using remote sensing imagery, and section 7.4 reviews
socio-economic activity modelling through the integration of remote sensing
information and other environmental and socio-economic information in GIS
format.
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Figure 7.1 Remote sensing applications in urban socio-economic information estimation.
(a) direct estimation from the radiance/reflectance of remote sensing imagery; (b) estimation
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Figure 7.2 Remote sensing applications in urban socio-economic activity modelling
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7.3 Socio-economic information estimation

There is a relatively long history of estimating selected socio-economic informa-
tion from remote sensing imagery. Among these socio-economic characteristics,
population is the most important socio-economic factor and has been extensively
studied. In addition to population information, other socio-economic information,
such as employment information, gross domestic product (GDP) and electrical
power consumption, has been studied recently. In this section, the studies of socio-
economic information estimations, including population, employment, GDP and
electrical power consumption, are reviewed.

7.3.1 Population estimation

Population is an important socio-economic characteristic in urban studies because it
is essential in supporting planning processes. In the design of public facilities, such
as transportation infrastructure, libraries, public schools and hospitals, population
distribution serves as a decisive factor. For example, a primary factor for transit
route design is population density, because it is inadvisable to put a transit route
in a region with low population density (Benn, 1995). In addition, population also
plays an important role in private facility location analysis. In particular, population
information is frequently utilized in retail store location site evaluation and insurance
company customer analysis (Plane and Rogerson, 1994). Due to the importance of
population information and the associated socio-economic attributes, censuses are
taken regularly in most countries. Census population, however, is only available
for every 5 or 10 years, although many planning activities require population
information in non-census years. Moreover, for some developing countries, census
data are not reliable or even available. Therefore, remote sensing provides an
alternative means for estimating population information.

The earliest application of remote sensing in estimating population information
utilizes the house-counting method applied to aerial photos (Lo, 1986a, 1986b).
With this method, the number of houses is counted manually from the aerial photos.
Then a survey is conducted to estimate the average number of persons per house.
The total population for a study area can be calculated as a product of house numbers
and average household size. Although this method proves to be relatively accurate,
it involves manual interpretation of aerial photos. Time consuming and labour-
intensive, this method is impractical for large urban areas. Moreover, accurate
household size information, which is required for a variety of dwelling types, is
difficult to obtain (Lo, 1989).

Automatic approaches with satellite remote sensing imagery, therefore, have been
proposed for estimating population density (Lo, 1995). According to the infor-
mation utilized for population estimation, these approaches can be classified into:
(a) implicit estimation, in which information about spectral radiance/reflectance and
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their transformations is utilized for population estimation (see Figure 7.1a); and (b)
explicit estimation, which utilizes urban physical parameters extracted from remote
sensing imagery for population generation (see Figure 7.1b) (Cowen and Jensen,
1998; Jensen and Cowen, 1999). For implicit estimation, Lo (1995) utilized the
radiances of bands 1, 2 and 3 of SPOT HRV imagery to obtain population density
information in Hong Kong, China. In particular, he discovered that strong negative
correlations existed between population density and the radiances of band 3 (0.79–
0�89 �m) and band 1 (0.50–0�59 �m), and a positive correlation existed between
population and the radiances of band 2 (0.61–0�68 �m). In his study, although
urban biophysical parameters were not utilized, it was clear that the radiances of
band 1 and 3 in SPOT HRV imagery were closely associated with vegetation
concentration, which had a negative relationship with population density. More-
over, the radiance of band 2 was highly related to urban built-up areas; therefore,
it had a positive correlation with population density. In addition to the radiances
in individual bands, Harvey (2002a) utilized radiance transformations, including
radiance squares, cross-product of radiances in different bands, radiance ratio from
different bands, difference:sum ratio, etc. Moreover, Sutton et al. (1997) utilized
light energy extracted from the Defense Meteorological Satellite Programme Oper-
ational Linescan System (DMSP-OLS) imagery for population estimation. The light
energy represents the intensity of urban land uses, with higher energy existing
in commercial and residential areas, and lower energy in agricultural areas. In
summary, in these implicit estimations, although urban physical parameters are not
directly utilized, specific urban physical environments are represented by radiances
and their transformations. The other category of regression models utilizes urban
biophysical and land use information extracted from remote sensing imagery for
population estimation. As an example, urban land use types have been widely
utilized. In particular, Lo (1995, 2003) utilized high and low land use areas to
estimate zonal population counts. Chen (2002) applied three levels of residential
density for projecting population density. Li and Weng (2005) also applied land
use types as independent variables but developed separate regression models for
different residential regions in Indianapolis, Indiana. In addition to land use infor-
mation, Wu and Murray (2007) applied impervious surface fraction as an indicator
of estimated population.

With information extracted from remote sensing imagery, it is necessary to
construct a regression model to estimate population information. Reference popula-
tion data, however, are only available at zonal levels (e.g. census tract), which are
incompatible with the units of remote sensing information. Two types of modelling
units, zone-based and pixel-based, have been utilized (Lo, 2003). The zone-based
model involves aggregating pixel-based information to a zonal level, thereby
performing regression analysis with the zonal data. This method has been popularly
utilized for population estimation, and reasonable accuracies have been achieved
(Sutton et al., 1997; Chen, 2002; Harvey, 2002a; Lo, 2003). This zone-based model
also has two variations, one exploring the relationship between population counts



7.3 SOCIO-ECONOMIC INFORMATION ESTIMATION 155

and scale-dependent variables (e.g. area of a particular land use type), the other
relating to the relationship between population density for a zone and a number of
scale-independent variables (e.g. percentage of a particular land use type for a zone).
In contrast to the zone-based models, the pixel-based method disaggregates zonal
population to individual pixels (Harvey, 2002b). In particular, Harvey developed
an expectation-maximization (EM) algorithm, and utilized iterative re-estimation
approaches for population estimation. This model can be divided into an initial step
and two iterative steps. In the initial step, the total population in a census zone is
evenly redistributed to each residential pixel within that zone. Then two iterative
steps are applied to refine the initial results and adjust the population count for
each pixel until an acceptable result can be obtained. Wu and Murray (in press)
compared these zone-based and pixel-based models for population estimation, and
concluded that the pixel-based model provides slightly better results.

7.3.2 Employment estimation

Similar to population estimation, Lo (2004) explored the relationships between
employment densities and apparent surface temperature extracted from Landsat 7
ETM+ imagery in Atlanta, GA. In particular, Lo found that high surface tempera-
ture is highly correlated with high-density urban uses (commercial and industrial),
which, in turn, are the geographic areas with high employment density. Based on
this observation, Lo constructed a zone-based regression model to quantify the
relationship between employments and surface temperature with census tract data
(equation 7.1).

ln�employment density� = a0 + a1 × ln�surface temperature� (7.1)

Results indicate that the correlation between employment density and surface
temperature is statistically significant; Pearson’s R = 0�42� p < 0�01%.

7.3.3 GDP estimation

In addition to population and employment information, gross domestic product
(GDP) has been estimated using remote sensing technologies (Elvidge et al.,
1997; Sutton and Costanza, 2002). In particular, the Defense Meteorological Satel-
lite Programme Operational Linescan System (DMSP-OLS) was recently utilized
for generating GDP estimates globally. The visible–near-infrared (VNIR) band
(0.4–1�1 �m) of the DMSP-OLS has an ability to recognize low levels of VNIR
radiance (e.g. commercial and residential light) at night. This light information in
urban areas may provide some hints for urban economic activities, measured as
GDP. One early application of GDP estimation was reported by Elvidge et al.
(1997), who performed a log–log regression analysis for 21 American countries,
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including the USA, South American countries (e.g. Brazil, Colombia, etc.) and
some island countries in America. The equation was reported as follows.

log�GDP� = −3�185 + 1�159 × log �area lit� (7.2)

The GDP is measured in billions of US dollars, and the area lit represents the
light area identified from the DMSP-OLS imagery. Pearson’s R2 was reported as
0.97. With area lit as the independent variable, Doll et al. (2000) developed a
similar regression model and applied it in 46 countries selected globally for GDP
estimation. The regression model is:

log�GDP� = 0�9735 × log �area lit� (7.3)

The lit area for each country was obtained through analysing the DMSP imagery.
The R2 of the regression model is 0.85. In addition to the light area in the night,
some other parameters have been utilized for GDP estimation. In particular, the total
light energy measured from the DMSP-OLS imagery was utilized by Sutton and
Costanza (2002) to estimate the GDP for global countries and Gross State Product
(GSP) for every state in the conterminous USA. The formulation is as follows:

log �GDP� = b0 + b1 × log �light energy� (7.4)

log �GSP� = c0 + c1 × log �light energy� (7.5)

Moreover, Lo (2002) developed two new variables, light surface area and volume,
for GDP estimation from the DMSP-OLS imagery. Specifically, a triangulated
irregular network (TIN) was constructed based on the light radiance for every pixel.
Then the light surface area and volume for each selected city were extracted from
the TIN model. The results of this model are reported in equations 7.6 and 7.7:

log �GDP� = d0 + d1 × log �surface area� (7.6)

log �GDP� = e0 + e1 × log �volume� (7.7)

7.3.4 Electrical power consumption estimation

Together with GDP estimation, electric power consumption is another socio-
economic characteristic that can be estimated from the DMSP-OLS imagery. With
light area, light energy and light energy surface area and volume as independent
variables extracted from the DMSP-OLS imagery, the electric power consumption
has also been successfully estimated (Elvidge et al., 1997; Lo 2002; Sutton and
Costanza, 2002; Amaral et al., 2005).
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7.4 Socio-economic activity modelling

In addition to the direct estimation of socio-economic information, remote sensing
technologies have been applied for socio-economic activity modelling. While
the objective of socio-economic estimation is to generate specific information
(e.g. population, employment) which is unavailable, socio-economic modelling
assumes the availability of specific socio-economic information, and attempts to
generate new information or discover the patterns and forces of socio-economic
activities with the help of remote sensing imagery. In this chapter, several research
areas involving the application of remote sensing information to socio-economic
modelling are reviewed. In particular, section 7.4.1 explores the applications of
remote sensing technologies in population interpolation; section 7.4.2 reviews the
creation of socio-economic indices with the integration of remote sensing and other
information; and finally, section 7.4.3 summarizes research related to understanding
and modelling socio-economic phenomena, with a specific focus on housing price
modelling.

7.4.1 Population interpolation

Population information is always collected and reported in enumeration zones, such
as census blocks and tracts. This zone-based population data, however, creates prob-
lems in many geographic analyses (Martin, 1989, 1996; Fortheringham and Wong,
1991). One problem is related to data aggregation. Census data mask underlying
individual population distribution because they are reported through aggregating
population counts in pre-defined areal units. This aggregation requires an assump-
tion of even population distribution within a zone for further geographical analysis
(Moon and Farmer, 2001). Another problem is associated with data incompatibility
(Bracken, 1993; Goodchild et al., 1993). Varying zonal arrangements, such as school
districts and transportation analysis zones, have been utilized by different depart-
ments and agencies for data collection and distribution. Therefore, a significant
problem exists for data integration, which is needed for many geographical analyses
and models. Further, the modifiable areal unit problem (MAUP) may exist when
applying this zone-based population data in geographical analysis. In particular,
the relationships between variables may only be a function of zonal arrangements,
thus biased results may be obtained in statistical and spatial modelling (Openshaw,
1977; Martin, 1996).

One method of creating better population information is through the smart inter-
polation method, defined as transferring data with the help of additional information
(Langford et al., 1991; Harris and Longley, 2000). Remote sensing has served
as important additional information for population interpolation. The studies by
Langford et al. (1991) and Langford and Unwin (1994), in which land use and
land cover data extracted from Landsat TM imagery is incorporated in generating
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better population information through regression analysis, are early applications of
population interpolation. Similarly, Yuan et al. (1997) developed a generic linear
model (GLM) to explore the relationship between population counts and land cover
types generated from Landsat TM imagery. Further, they created a raster-based
population surface (30 × 30 m) using the regression results and a scaling technique.
In addition to regression technologies, Wu and Murray (2005) applied a co-kriging
method to interpolate population density, by modelling the spatial correlation and
cross-correlation of population counts and impervious surface fraction extracted
from Landsat ETM+ imagery. They proved that the co-kriging method is superior
to regression techniques in exploring the relationship between population counts
and remote sensing information. Moreover, they also performed a scaling method
to remove other effects which cannot be modelled by remote sensing information.
In addition to these population interpolation approaches, with which population is
generated at fine resolutions and applied to small geographic areas, the Landscan
Global Population Project (Dobson et al., 2000) created a raster-based population
surface at a resolution of 30 × 30 s and applied it globally. In this project, census
counts are redistributed to raster cells based on additional information, including
roads, slope, land cover, populated places, night-time lights, exclusive areas, urban
densities and coastlines. Among these data, global land cover data were generated
from the advanced very high resolution radiometry (AVHRR) imagery. The night
light information was extracted from the DMSP-OLS imagery. With all of this
information, the relative likelihood of population occurrence in each raster cell was
calculated.

7.4.2 Socio-economic index generation

In addition to the applications in population interpolation, remote sensing infor-
mation, together with other socio-economic information in GIS format, has been
successfully applied in generating socio-economic indices (Lo, 1997). A residen-
tial quality index, for example, was developed with house size and vegetation
percentage (including trees and grass) as positive indicators, and road and non-
residential building densities as negative indicators (Forster, 1983). These indicators,
such as house size and vegetation percentages, were extracted from Landsat TM
imagery, aerial photographs, and housing sale records. As a further step, Weber and
Hirsch (1992) developed three socio-economic indices, including a housing index,
a quality index, and an attractivity index through integrating three data sources:
SPOT XS imagery, census data and cartographic data. In particular, the housing
index relates to housing size and the types of suburban houses. The housing index
represents housing quality, with larger houses having higher values. Related to the
housing index, the quality index was developed with housing quality and vege-
tation percentage as positive indicators, and high-density residential housing and
commercial housing density as negative indicators. Finally, the attractivity index
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was formulated as positively related to the percentages of housing land cover and
urban vegetation cover, and negatively related to industrial, commercial and parking
land uses. Related to these studies, Lo (1997) integrated Landsat TM data with
census socio-economic information to generate the quality-of-life index. In partic-
ular, environmental variables, including Normalized difference vegetation index
(NDVI), surface temperature and percentage of urban land uses, were extracted
from the Landsat TM imagery. Other socio-economic information, including popu-
lation density, per capita income, median home value and percentage of college
graduates, was obtained from census data. With all these data, Lo (1997) applied
a principal component analysis to obtain the quality-of-life index. This index is
positively correlated with per capita income, median home value, percentage of
college graduates and NDVI, and negatively correlated with population density,
percentage of urban land uses and surface temperature.

7.4.3 Understanding and modelling socio-economic phenomena

In addition to direct generation of socio-economic indices, remote sensing informa-
tion has also been used to better understand and model socio-economic phenomena.
One exciting application is the study of Weeks et al. (2004), in which remote
sensing information was utilized to represent neighbourhood context for under-
standing fertility patterns and their changes during 1986–1996 in Cairo, Egypt.
Specifically, the fractions of vegetation, impervious surface, soil and shade were
generated from remote sensing imagery. Texture information was also extracted
from the generated soil fraction image. These neighbourhood contexts, associated
with social class/human capital variables and proximate determinants of fertility,
were inputted to spatially filtered regression models. Results indicated that remote
sensing information can significantly contribute to fertility pattern analyses in Cairo,
Egypt. In addition to the fertility pattern analysis, Yu and Wu (2004) applied remote
sensing information in understanding population segregation patterns and their envi-
ronmental forces. In their studies, a population segregation index was calculated
using census data. Remote sensing information, including fractions of vegetation,
impervious surface, soil and land use types and texture information, was utilized
to understand the influences of urban biophysical environments on urban popu-
lation segregation phenomena. They concluded that remote sensing information
makes significant contributions to understanding population segregation patterns. In
addition to the above socio-economic modelling, remote sensing information also
contributes to housing market analysis. Forster (1983) stated that remote sensing
information can serve as environmental and locational parameters which may signi-
ficantly affect housing prices. In particular, Forster (1983) utilized the housing
density and road density extracted from Landsat data and aerial photographs, and
the distance to the central business district (CBD), as independent variables to
model house prices. In addition to Forster’s (1983) work, Yu and Wu (2006)
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also incorporated remote sensing information to model house prices in Milwaukee,
Wisconsin. In the study, they compared modelling results between a traditional
hedonic model and the model with remote sensing information, and concluded that
the addition of remote sensing information, in particular the product of soil and
impervious surface fraction, can significantly improve housing model accuracy. In
the following sections, studies integrating remote sensing and GIS information in
population segregation analysis and housing value modelling are reported.

7.4.3.1 Population segregation analysis

Population segregation is considered to be an essential socio-cultural character-
istic for analysing urban residential patterns. Traditionally, residential segregation
patterns have only been analysed with census data, and environmental conditions
have been ignored. In this study, urban environmental conditions were gener-
ated from Landsat ETM+ imagery applied to Milwaukee County, Wisconsin (see
Figure 7.3), for analysing residential segregation patterns. In particular, biophys-
ical parameters, including the fractions of vegetation, soil and impervious surfaces,
were generated for each ETM+ pixel using the normalized spectral mixture anal-
ysis method proposed by Wu (2004). Fraction images (see Figure 7.4) show that
high vegetation fraction is generally associated with suburb and rural areas, while

Wisconsin

Milwaukee 

Figure 7.3 Location map of Milwaukee County, Wisconsin, USA. The right part shows an
ETM+ image acquired on 9 July 2001; the white line on the image illustrates the boundary
of Milwaukee City
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Figure 7.4 Biophysical parameters generated from ETM+ imagery

impervious surfaces are concentrated in commercial and high density residential
areas. These biophysical parameters may represent environmental conditions, with
highly vegetated and less-developed residential areas indicating desirable environ-
mental quality. In addition to these three biophysical parameters, texture information
was also extracted from the ETM+ imagery. In particular, the contrast statistic was
applied to represent urban environmental conditions. In this study, it is assumed that
the areas with high contrast indicate low environmental quality. In addition to these
urban environmental parameters, residential segregation information was quantified
through local segregation indices. Although many segregation indices, such as the
index of dissimilarity D (Duncan and Duncan, 1995), the spatial segregation index
GD (Wong, 2005) and the entropy-based diversity index H (Plane and Rogerson,
1994), have been developed recently, they are essentially global measurements.
Local segregation measures, indicating the relative degree of segregation for indi-
vidual spatial units, are less discussed in the literature. The local segregation index
(Di) utilized in this study is similar to the local index developed by Wong (1996),
with the addition of a scale adjustment factor. With 2000 census block group data
in Milwaukee, the Di can be calculated as follows:

Di =
m

2

(
bi

B
− wi

W

)
(7.8)

where Di is the local segregation index for a particular block group i; bi and wi

are African-American and White population counts in block group i; B and W are
the total African-American and White population in the study area; and m is the
total number of block groups (880 in the study area). The segregation index map
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Figure 7.5 Local segregation index (Di)

(see Figure 7.5) indicates a clear pattern of population segregation, with African-
American population (higher Di value) in the central to north-western part of the
county, and White population (lower Di value) in other areas.

With this segregation index (Di� and the urban physical environmental para-
meters, global ordinary least squares (OLS) regression was applied to explore their
relationships:

Di = �0 + �1 × High_dens_soil + �2 × Low_dens_imp + �3 × Contrast (7.9)

where High_dens_soil indicates the fraction of soil in high-density residential
areas; Low_dens_imp refers to the fraction of impervious surfaces in low-density
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Table 7.1 Regression results between local segregation index and environmental para-
meters extracted from ETM+ imagery

Estimate SE Standardized
coefficients

t Value p �>�t��

(Intercept) −0�82 0�10 −8�00 4�34e − 15∗∗∗

High_dens_soil 49�01 2�11 0�64 23�23 < 2e − 16∗∗∗

Low_dens_imp −3�13 0�35 −0�24 −9�00 < 2e − 16∗∗∗

Contrast 0�02 0�005 0�10 3�56 0�0004∗∗∗

Significance codes: *** = 0; ** = 0.01; * = 0.05.
Residual SE, 0.73 on 876 DF; F -statistic, 199.4 on 3 and 876 DF, p < 2�2e − 16; multiple R2, 0.41;
adjusted R2, 0.40.

residential areas; Contrast is the contrast statistic extracted from ETM+ imagery,
and �0, �1, �2 and �3 are regression coefficients. Regression results (see Table 7.1)
suggest three findings. First, there is a significant relationship between residential
segregation patterns and urban physical environmental information extracted from
remotely sensed imagery. This indicates that remote sensing information is valuable
in analysing segregation patterns. Secondly, the regression coefficients indicate that
African-Americans are likely to live in high-density residential areas with high
soil fractions, while White population concentration tends to occur in low-density
residential areas with a high percentage of impervious surfaces. Moreover, African-
Americans tend to live in areas with high spatial variations of land cover types.
Third, the regression results also reveal that these environmental parameters can
only account for approximately 40% of residential segregation pattern variations.
This suggests the necessity of integrating other environmental or socio-cultural
information for better explanations.

7.4.3.2 Housing price modelling

Besides its applications in socio-cultural studies (e.g. segregation), remote sensing
information has also been applied in economic research. As an example, this section
develops a specific application, in which remote sensing information is incor-
porated into a hedonic housing price model. The hedonic housing price model
was initially developed by Rosen (1974), and has been widely applied as an
econometric tool for exploring determinants of housing values. These determinants
include housing structural attributes, location attributes and environmental condi-
tions. Many hedonic housing models only include housing structural and/or location
attributes, and the influences of environmental conditions on housing values are
less studied. Therefore, one major objective of this study was to explore whether
remote-sensing-generated environmental factors can contribute to housing price
analyses.

The study area was the city of Milwaukee, Wisconsin, USA (see Figure 7.3).
Three environmental parameters, including the fractions of vegetation, impervious
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Table 7.2 Traditional hedonic housing price model with housing structural attributes

Coefficients Estimate SE t Value p �>�t��
Intercept 8�345 1�184 7�048 0�000
Air conditioners 1�623 0�101 16�147 0�000
Floor size 0�056 0�181 0�310 0�756
Fireplaces 1�088 0�127 8�567 0�000
House age 0�368 0�073 5�014 0�000
Bathroom number 0�692 0�179 3�871 0�000
Story number 0�119 0�146 0�816 0�415

Dependent variable, house price, log-transformed.
Residual SE, 0.306 (training data), 0.274 (testing data).
Adjusted R2, 0.689; F -statistic, 190.8 on 6 and 507 DF; p < 2�2e − 16.

surface and soil, were derived from the ETM+ image obtained on 9 July 2001. House
price and structural attributes were obtained from the Master Property (MPROP)
data file of the city of Milwaukee. First, a traditional hedonic model was developed
with six selected housing structural variables, including floor size, number of bath-
rooms, number of stories, house age, and two dummy variables indicating whether
or not air-conditioners and fireplaces were present. Specifically, a semi-log hedonic
model was developed (equation 7.10):

log P = �0 +
6∑

i=1

�iXi (7.10)

where Xi indicates housing structural variables, and �0 and �i are regression coef-
ficients. The results of this model are reported in Table 7.2.

In order to explore whether environmental attributes derived from remote sensing
imagery can improve model results, a hedonic model with remote sensing informa-
tion was constructed as follows:

log P = �0 +
6∑

i=1

�iXi +
∑

j

�jYj (7.11)

where Yj represents environmental factors derived from remote sensing imagery, and
�j represents regression coefficients with these environmental factors. In this study,
all three environmental factors (fractions of vegetation, impervious surface and soil)
have significant contributions to the hedonic model. The product of impervious
surface and soil fraction (SoilImp), however, is the most important factor, and thus
was included in the model. The final result of this model is reported in Table 7.3.

Comparing Tables 7.2 and 7.3, three conclusions can be drawn. First, the rela-
tionship between housing values and the six housing structural attributes and remote
sensing generated environmental factor (SoilImp) is significant. In both models, the
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Table 7.3 Hedonic housing price model with housing structural attributes and environ-
mental conditions generated from ETM+ imagery

Coefficients Estimate SE t Value p �>�t��
Intercept 10�476 1�131 9�262 0�000
Air conditioners 1�498 0�095 15�792 0�000
Floor size −0�031 0�170 −0�184 0�854
Fireplaces 0�839 0�122 6�877 0�000
House age 0�090 0�076 1�189 0�235
Bathroom number 0�844 0�168 5�032 0�000
Story number 0�289 0�138 2�099 0�036
SoilImp −5�626 0�643 −8�747 0�000

Dependent variable, house price, log-transformed.
Residual SE, 0.285 (training data), 0.263 (testing data).
Adjusted R2, 0.730; F -statistic, 198.8 on 7 and 506 DF; p < 2�2e − 16.

adjusted R2 indicate about 70% of variances of housing values can be explained by
these hedonic models. Second, by comparing the adjusted R2 of these two models,
it can be found that the explanation power of the model improves about 4% through
the addition of environmental attributes from remote sensing imagery. Moreover,
a negative relationship between the housing value and the product of soil and
impervious surface fraction has been obtained. This suggests that houses with lower
values can be found in the regions where soil and impervious surfaces are abun-
dant. Since the concentration of soil and impervious surface indicates deteriorated
environmental conditions, the relationship is quite reasonable, and it proves that the
environmental factors extracted from remotely sensed data should be incorporated
in modelling housing prices.

Although in general the selected housing structural and environmental attributes
can explain most of the variances in housing values, a close inspection of the
coefficients and p values of several individual attributes reveals unexpected effects.
In particular, the floor size, an important factor in housing value assessment, does
not play a significant role in projecting housing values in both models. Moreover,
in the model without remote sensing information, house age has a significant and
positive influence on house values (see Table 7.2). However, this relation becomes
insignificant when the environmental variable (SoilImp) is added (see Table 7.3).
Further, in both models, the availabilities of air-conditioners and fireplaces are
more important than other factors, such as number of bathrooms and bedrooms,
and floor size. These results seem to be counter-intuitive. However, descriptive
summary statistics (Table 7.4) indicate that the coefficients of variation (CV ) of
housing structural and environmental attributes vary significantly, with air condi-
tioner availability (64.2%) and fireplace availability (126.7%) having the highest
variations. This might partially explain why these two attributes are more important
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Table 7.4 Descriptive summary statistics of housing structural attributes and environmental
conditions (SoilImp)∗

Mean SD Coefficient of
variation (%)

Min Max

Air conditioners 0�372 0�239 64�2 0 0�879
Floor size (ft2) 1358�9 417�3 30�7 877�8 5786�3
Fireplaces 0�15 0�19 126�7 0 0�96
House age (years) 74�3 23�6 31�8 13�33 122�50
Bathroom number 1�32 0�301 22�8 1�00 4�83
Story number 1�21 0�24 19�8 1 2�67
SoilImp 0�055 0�0239 45�5 0�004 0�128

∗Average values at the census block group level are reported.

than others. Moreover, a correlation analysis (see Table 7.5) illustrates the existence
of strong co-linearities among these housing structural and environmental attributes.
In detail, the floor size is significantly and positively correlated with the number
of stories (R = 0�806), fireplace availability (R = 0�754) and number of bathrooms
(R= 0�724), while the house age is significantly and negatively correlated with the
air conditioner availability (R=−0�767) and the product of the soil and impervious
surface fractions (R=−0�637). The existence of such co-linearities among housing
attributes might be the reason for the insignificance of floor size and the unexpected
effects of housing age in the models. To address these problems, however, better
modelling technologies must be developed.

Table 7.5 Correlation matrix among housing structural attributes and environmental condi-
tions (SoilImp)

Air
conditioners

Floor size Fireplaces House
age

Bathroom
number

Story
number

Soil-Imp

Air
conditioners

1.000 −0�236 0�207 −0�767∗ 0�325 −0�182 0�418∗

Floor size (ft2) 1�000 0�754∗ 0�305 0�724∗ 0�806∗ −0�182

Fireplaces 1�000 −0�180 0�825∗ 0�512∗ 0�120

House age
(years)

1�000 −0�303 0�340∗ −0�637∗

Bathroom
number

1�000 0�514∗ 0�180

Story number 1�000 −0�204

SoilImp 1�000

∗Significant correlation at 0.01 level between the two crossed variables.
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7.5 Advantages and limitations of remote sensing
technologies in socio-economic applications

The recent developments of remote sensing technologies bring a potentially scien-
tific basis for urban socio-economic applications. Remotely sensed technologies
provide valuable information and innovative approaches for estimating the patterns
of socio-economic activities and understanding their underlying forces. Unlike zone-
based socio-economic information, such as census data, remotely sensed imagery
provides self-consistent and objective measurements of urban physical environments
(Miller and Small, 2003), which in turn reflect urban socio-economic activities. In
the rest of this section, the advantages and limitations of remote sensing technologies
in socio-economic information estimation and modelling are discussed.

7.5.1 Socio-economic information estimation

The advantages of applying remote sensing technologies to socio-economic infor-
mation estimation can be summarized as follows. First, some socio-economic
information, such as census data, cannot be obtained on a timely basis for the
purposes of urban planning and management. Remote sensing imagery, however,
can be obtained on a daily or monthly basis and thereby has the potential for
providing updated socio-economic information. Second, for a few developing and
less-developed countries, socio-economic information is unavailable or unreliable.
Remote sensing imagery may be the only reliable resource for estimating socio-
economic information, and may also be utilized for cross-validation. Finally, remote
sensing technologies are very important for global estimations of socio-economic
activities (e.g. population and GDP), because it is unlikely that such global socio-
economic information can be obtained from other sources.

Although it is valuable to apply remote sensing technologies to socio-economic
information estimation, there are still many limitations which prohibit further appli-
cations. One limitation is associated with the need for socio-economic information
estimation. In developed countries, even many developing countries, detailed and
updated socio-economic information is publicly available. Although some data are
not collected in a timely manner, many methods have been applied to project the
information for a particular period. Therefore, for developed countries, estimation
of socio-economic information from remote sensing technologies may be unnec-
essary. The other limitation is associated with the estimation accuracy. Remote
sensing is an important and precise tool for measuring urban biophysical and land
use information, but its relation with socio-economic activities depends on many
other socio-culture factors. Therefore, it is somewhat indirect and weak. Taking
population estimation as an example, the reported population estimation accuracies
for small areas were only approximate or less than 80%. Therefore, the applications
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of such estimated information may be problematic and create biased results in
further urban planning and management.

7.5.2 Socio-economic information modelling

The integration of remote sensing and other sources of socio-economic and admin-
istrative data has great potential and has been successfully applied to urban land use
and socio-economic activity modelling (Mesev et al., 1995; Mesev, 1998a, 1998b;
Miller and Small, 2003). Remotely sensed data can provide objective and timely
information about urban physical environments, which cannot be easily obtained
from other sources or in situ measurements. This information can be considered
as an important input, which represents environmental or neighbourhood charac-
teristics, to socio-economic models. Therefore, it is possible to explore the causal
influences of urban physical environments on socio-economic activities. In addition,
the detailed urban biophysical information extracted from remote sensing imagery
is valuable in disaggregating zonal socio-economic data and generating better socio-
economic indices. Overall, there is great potential for the integration of remote
sensing and GIS technologies in socio-economic activity modelling.

However, there are still some challenges in the application of remote sensing
technologies to socio-economic modelling. One challenge is the lack of communi-
cation between remote sensing researchers and social scientists. Currently, remote
sensing researchers do not fully understand socio-economic processes and modelling
methodologies, and social scientists do not acknowledge the need of remote sensing
technologies and may not appreciate the benefits of these technologies. The other
challenge is associated with the difficulties of incorporating remote sensing infor-
mation into socio-economic modelling. For example, population counts for large
areas (e.g. county) in a non-census year are typically estimated by demographic
and economic approaches, in which population counts are calculated by taking
the latest census enumeration and adding births and net migration and subtracting
deaths (Bryan, 2000, 2004). For small areas (e.g. census tracts), population counts
are estimated using the housing unit method (HU), in which electric bills, building
permits and other administrative information are typically applied for estimation
(Smith et al., 2002). It may be possible to incorporate remote sensing information
into these existing models, but further extensive investigations are needed.

7.6 Conclusions

This chapter discusses the principles of remote sensing applications in socio-
economic studies, and summarizes these applications into two groups: (a) socio-
economic information estimation; and (b) socio-economic activity modelling. In the
first group, the estimates of several socio-economic characteristics, including popu-
lation, employment, GDP and electric power consumption, have been reviewed.



REFERENCES 169

For the second group, several applications, such as population interpolation,
socio-economic index generation and socio-economic activity understanding and
modelling, have been summarized. Finally, this chapter discusses the advantages
and limitations of these applications, and argues for the great potential of integrating
remote sensing and GIS for socio-economic modelling.
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8.1 Introduction

Urban areas are not only the engines of global economic growth but also magnets
for new residents flooding in from rural areas (Knox and McCarthy, 2005). Over
the past several decades, world-wide urban areas have experienced rapid growth in
both human population and physical size. In 1950, only one-third of the world’s
2.5 billion people were urban dwellers. In 2007, more than half of the 6.6 billion
people of our planet live in cities. At the global scale, the growth of urban areas,
or urbanization, shows no signs of slowing down and will likely continue unabated
into the next two decades. While most non-American cities are more compact and
clustered, cities in the USA have been experiencing a process of accelerated outward
growth, with low-density suburbs spreading beyond the boundaries of central cities
and over large areas of previously rural landscape (Kaplan et al. 2004). Such growth
of suburbs, sparked largely by federal and state government policies, massive road
building projects and automobile-dependent community planning, has considerably
transformed the American landscape (Gillham, 2002). Urban growth has often been
viewed as a sign of the vitality of a regional economy, but it has rarely been well
planned, thus creating numerous environmental problems, such as accumulation
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of waste, air pollution, shortage of potable water, traffic congestion and loss of
valuable farmland and green spaces among others (SDCN, 2001). These problems
have placed an enormous burden on organizations responsible for the planning and
management of urban areas.

For a long-term solution to the major environmental problems rising from urban
development, synergies and strategic alliances between governments, local authori-
ties, non-governmental organizations (NGOs), private enterprise and academia have
been formed to promote urban sustainability, a movement that was adopted in the
Agenda 21 document during the 1992 United Nations Rio Summit (UNCED, 1992).
Sustainable urban development is widely defined as ‘development that meets the
needs of the present without compromising the ability of future generations to meet
their own needs’ (SDCN, 2001). Its ultimate goal is to optimize the economic and
social conditions of citizens while respecting the need to preserve the world’s envi-
ronment and natural resources. It has become a vital imperative of international,
national and local policies. The sustainable imperative has also made itself felt
in planning and architecture. It has been fully incorporated into two interrelated
perspectives on mitigating the urban sprawl that has become the predominant growth
pattern in the USA: new urbanism and smart growth. The former was launched
primarily by architects and physical planners, and focuses on physical form whose
changes are considered as prerequisites for urban economic, social and ecological
change (Knaap and Talen, 2005). Smart growth has been advocated predominately
by environmentalists and policy planners, thus embracing more broad movements
that satisfy growth while also minimizing the negative effects of urban sprawl
(Gillham, 2002).

Sustainability goals involve the design and implementation of effective polices
and plans to manage resources and provide services in the urban environment.
This in turn requires accurate information bases and robust analytical technologies
that can help evaluate urban growth dynamics and design environmentally sound
development scenarios. Conventional survey and mapping methods cannot deliver
the necessary information in a timely and cost-effective manner (Masser, 2001).
Remote sensing, through sensors mounted on various air-borne or space-borne plat-
forms, is providing the most important source of data for mapping the physical
and cultural attributes of urban landscapes that can be used to monitor progres-
sive urban development (Paulsson, 1992; Jensen and Cowen, 1999; Yang, 2002).
GIS offers the power to integrate biophysical and socio-economic data, which can
help us to understand the forces driving urban growth and development (LaGro
and DeGloria, 1992; Foresman et al., 1997; Nedovié-Budié 2002; Burgi et al.,
2004). Spatial modelling technologies depict complex structures of objects or events
using mathematical equations that can be used to explore the inherent dynamics
of complex urban systems and assess different scenarios for future urban growth
(Alberti, 1999; Clarke et al., 2002; Cheng and Masser, 2003; Yang and Lo, 2003;
Yeh and Li, 2003; Pijanowski et al., 2005). The integration of remote sensing,
GIS and dynamic modelling technologies forms a platform for data acquisition,
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integration and modelling to support sustainable urban planning and management
(Yang, 2000). Nevertheless, the urban environment, because of its complex and
highly dynamic landscape, has been challenging the applicability and robustness
of these methods and technologies (Longley, 2002). Further research efforts will
certainly be maintained and will probably intensify in order to adapt these technolo-
gies to solve urban problems in a productive manner, thus reinforcing the absolute
and comparative utility of current spatial information technologies.

The current research explores the applicability of integrating remote sensing, GIS
and dynamic spatial modelling technologies to support sustainable urban growth
management, using the city of Atlanta, Georgia, as a case. For the past three
decades, Atlanta has been one of the fastest growing metropolises in the USA as
it emerged to become the premier commercial, industrial and transportation urban
centre of the south-east. The population increased 27% during 1970–1980, 33%
during 1980–1990 and 40% during 1990–2000. The city has expanded greatly as
suburbanization consumes large areas of agricultural and forest land adjacent to the
city, pushing the peri-urban fringe farther and farther away from the original urban
boundary. This rampant suburban sprawl has provoked concerns over losses of large
areas of primary forests, inadvertent climate repercussions, and the degradation of
the quality of life in this region (Bullard et al., 2000; Lo and Quattrochi, 2003).
By using population trends, land use, traffic congestion and open space loss, Sierra
Club’s 1998 Annual Report ranked Atlanta as America’s most sprawl-threatened
large city (Sierra Club, 1998). Apparently, Atlanta has emerged as the sprawl capital
of the nation and therefore is ideal for the study of urban sprawl. Since 1996, the
author has been involved in various research projects aiming to understand the
dynamics of change in Atlanta by using spatial information technologies. This article
examines urban growth dynamics and future development scenario simulations,
part of the above research effort. The primary objective of this work is to develop
a comprehensive methodology for urban growth dynamics research that combines
remote sensing, GIS and dynamic modelling for mutual reinforcement of the utility
of these technologies. This should add useful insights to the emerging sustainable
development management research, in which data integration and modelling of
urban systems are central. Specifically, this project has three objectives: (a) to
examine urban spatial growth and landscape change along the outskirts of the
Atlanta region, as seen from a time series of satellite images; (b) to analyse the
major forces driving the observed growth and change; and (c) to imagine, test
and choose between two possible future urban growth scenarios under different
environmental and development conditions.

8.2 Research methodology

A loose integration strategy was adopted in order to take full advantage of the sophis-
ticated utilities available from various software packages. The research methodology
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Figure 8.1 The flowchart of working procedural route that supported the monitoring of
urban growth and landscape change, the analysis of forces driving the change and the
prediction of future development scenarios. This technical framework comprised five major
components: primary and secondary data acquisition; satellite image processing; change
analysis; spatial statistical analysis; and dynamic modelling

can be divided into five phases: data acquisition and collection; satellite image
processing; change detection; spatial statistical analysis; and dynamic modelling
(Figure 8.1).

8.2.1 Study area

The geographic area of Atlanta specified here includes 10 counties under the Atlanta
Regional Commission (ARC), as well as three additional counties, Coweta, Forsyth
and Paulding, which have shown growth patterns similar to those of the ARC
counties (Figure 8.2). The City of Atlanta is located in the centre. Physiographically,
the Atlanta area is mainly in the foothills of the southern Appalachians in Northern
Georgia, at an elevation of 300–350 m above sea level. The north-western part is in
the Appalachian Mountains. It has an even terrain that slopes downward toward the
east and south. The climate is generally characterized as mild. The Chattahoochee
River traverses the study area.

8.2.2 Data acquisition and collection

This study used a time series of Landsat images as the primary data for measuring
spatio-temporal urban growth at 6–8 year intervals, beginning in 1973. The Landsat
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Figure 8.2 Location of the study area. It consists of the 10 counties under the Atlanta
Regional Commission (ARC) and three additional counties, Forsyth, Paulding and Coweta,
that show a similar growth pattern. The city of Atlanta is shown

MSS data were used for the period before 1982, when TM data are not available.
After that period, TM and ETM+ data were used. Eight predominantly cloud-
free Landsat images were acquired by three sensors for Atlanta during 1973–1999
(Table 8.1). Most of the scenes were acquired during the spring or early summer
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seasons, when vegetation is in the stage of vigorous growth. The 1998 and 1999
scenes are the two exceptions. The 1998 TM scene, acquired in the winter season,
was used for improving landscape mapping, particularly for identifying vegetation.
The ETM+ scenes were acquired in late summer because these were the only scenes
free from clouds available between April and September 1999. Because of high
image quality, the 1988 MSS scene was used as the reference image for relative
radiometric normalization of other MSS data and no classification was attempted
for this scene because a higher resolution scene for 1987 was available.

To facilitate change mapping, driving force analysis and urban growth simulation,
a variety of existing data were collected, which include: digital images of Advanced
Thermal and Land Applications Sensor (ATLAS) on 11 May 1997; contact prints of
aerial photographs for 1986–1988; 1993 USGS digital orthophotos; the 1988–1990
land-cover classification from Georgia Department of Natural Resources; USGS
7.5 min Digital Elevation Model (DEM); US census survey data for 1980, 1990
and 2000; and major road networks from the AND Global Database (Table 8.1).
In addition, field surveys were conducted to help establish the relationship between
image signals and ground conditions. Representative spectral patterns for each
land category on satellite image(s) were selected, along with the aerial photos
corresponding geographically to these image spectral patterns. Field work also
helped to obtain first-hand information about urban sprawl throughout the study
area, which is useful for understanding the dynamics of change. A Trimble GPS
receiver was used for better positioning during the field surveys.

8.2.3 Satellite image processing

The image processing procedures identified here include preprocessing, classifica-
tion, GIS-based spatial reclassification and accuracy assessment. Geometric recti-
fication and radiometric normalization were attempted for image preprocessing.
The georeferencing strategy adopted was actually an image-to-image registration.
The 1997 TM image had been accurately georeferenced by SpaceImaging EOSAT.
This image was used as the reference to rectify other scenes. The 1973 and 1979
MSS images acquired by two earlier satellites are very different in contrast, despite
the identical processing conducted. To help restore a common radiometric response
among them, the relative radiometric normalization method developed by Hall et al.
(1991) was applied to the two MSS images by using the 1988 MSS scene as
the reference. Radiometric normalization was not attempted with the Landsat TM
images because they have been processed to high radiometric quality.

The 1973, 1979, 1987, 1993 and 1999 images were classified using a two-step
unsupervised method. First, the iterative self-organizing data analysis (ISODATA)
algorithm was used to identify spectral clusters from image data, excluding the
thermal band for the TM and ETM+ scenes. Then, the resultant clusters were
assigned to one of the six land use and land cover classes: high-density urban use
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(commercial and industrial buildings and large open transportation facilities); low-
density urban use (predominantly residential); cultivated/exposed land (areas with
sparse vegetation cover); cropland/grassland (grasses, other herbaceous vegetation
and crops); forest land (coniferous, deciduous, and mixed forests); and water.

Reclassification procedures were used to reduce the two types of misclassification
errors on the initial maps produced through the unsupervised classification. The
first type consisted of boundary errors due to the occurrence of spectral mixing
within a pixel, which has been suppressed by using a modal filter. The second
type consisted of spectral confusion errors due to the spectral similarity among
several land classes, which is inevitable for an image acquired with a broad-band
sensor and tends to be more perceptible in an urban scene than in a rural one.
Defining the spectral confusions involves the use of image spatial and contextual
properties. To this end, an image interpretation method was employed, because it
allows the combined use of spectral and spatial contents as well as human wisdom
and experience, thus providing the most powerful means for spectral confusion
identification. Image interpretation can be incorporated effectively into a digital
classification procedure with the use of on-screen digitizing, multiple zooming, area
of interest (AOI) functionality and other relevant GIS tools, such as overlaying and
recoding. In addition, several image-processing programmes permit advanced tools
for geoprocessing, through which some ‘manual’ operations can be implemented
automatically. Spectrally confused clusters were first identified, and AOI layers
were created by on-screen digitizing. The AOI layers served as masks for splitting
confused clusters. Finally, GIS reclassification functionality was employed to recode
the split clusters into correct land classes. This was an interactive process until
acceptable accuracy was obtained.

Due to the limited availability of reference data, it is impossible to perform
accuracy assessment for each map exhaustively. The accuracy assessment strategy
adopted here was to assess each type of imagery covering the study area through
a standard method (Congalton, 1991). Results revealed that the land use and land
cover maps classified from the TM or ETM+ images yielded slightly better accuracy
than those from the MSS images. Overall, all these maps met the minimum 85%
accuracy stipulated by the Anderson classification scheme (Anderson et al., 1976),
indicating that the image processing approach adopted here has been effective in
producing compatible land use and land cover data over time, despite the differences
in spatial, spectral and radiometric resolution of the three generations of Landsat
data used in this project.

8.2.4 Change analysis

Change analysis focuses on urban growth and the nature of change. To analyse the
urban expansion, the spatial distribution of two major urban classes was extracted
from each map in the time series. The change in urban land was summarized
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by using the GIS minimum dominate overlay method, which allows the smallest
amount of high-density or low-density urban use in 1973 to show up fully, while
only the net addition in the following years in the time sequence is shown. In this
way, the urban extent of five dates was summarized on one map. By assigning a
unique colour to the net addition of each year on the combined map, the progressive
growth of high-density or low-density urban land can be perceived. The statistical
summary of urban addition for each period was also generated.

The nature of change was analysed by characterizing land conversions through
a two-way cross-tabulation or matrix analysis that assigns a unique class for each
coincidence in two input layers, thus capturing different combinations of change.
This method was used to characterize the land conversions for the periods 1973–
1987 and 1987–1999. Given the total number of land classes, there are 16 possible
combinations for each period. Because this study focused on the conversion of
forest, cropland/grassland or cultivated/exposed land to urban uses, only nine were
selected for further analysis, while the others were merged into a single unit. The
combinations of conversion are: cultivated/exposed land to high-density urban use
(C1); cultivated/exposed land to low-density urban use (C2); cropland/grassland
to high-density urban use (C3); cropland/grassland to low-density urban use (C4);
forest to high-density urban use (C5); forest to low-density urban use (C6); and
cultivated/exposed land or cropland/grassland or forest to water (three conversions
here combined into one) (C7). C0 is used for all other combinations which are not
considered here.

8.2.5 Spatial statistical analysis

The purpose of spatial statistical analysis was to analyse the forces driving the
observed changes. This necessitated the incorporation of additional data into the
analysis. A total of 12 data layers were prepared, which were grouped into five
major categories (Table 8.1):

1. Statistical boundaries. The 1980 and 1990 county and census-tract boundaries
for the study area were extracted from the 1992 and 1995 TIGER street
centreline files.

2. Land use and land cover data. Four classes, viz. high-density urban, low-
density urban, cropland/grassland and forest, for 1973, 1987 and 1999, were
used here.

3. Topographic measures. Terrain elevation and slope were derived from USGS
7.5 min DEM.

4. Total population and per capita income. These two measures were estimated
for 1973, 1987 and 1999 by using data from several census years. This esti-
mation was based on the assumption that the human population and per capita
income grew exponentially and that their rates of increase were constant within
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two immediate census years. At the county level, the total population and per
capita income for the three specific years were computed through exponential
interpolation with data from the four census years, viz. 1970, 1980, 1990 and
2000. At the census-tract level, a dasymetric mapping method described by
Langford and Unwin (1994) was adopted to harmonize the original datasets
before applying exponential interpolation due to the change of tract boundaries
through time. The 1980 and 1990 census-tract boundaries are quite different,
as the latter includes more than 100 new tracts. Through dasymetric mapping,
the original 1980 dataset was remodelled by using the 1979 low-density urban
extent. The 1980 remodelled data were summarized with the 1990 census-tract
boundary. This compensated for the difference in tract boundaries between
the 1980 and 1990 data. For exponential interpolation, the growth rate for
1980–1990 was used for the periods 1970–1979 and 1990–1999 but adjusted
with the overall rates of increase for the entire study area.

5. Location measures. Urban centre proximity, highway proximity, node point
proximity and shopping mall proximity were generated for the analysis at
the tract level. In doing so, a weighting buffer grid was created from urban
centres, major highways, nodes and large shopping malls respectively. Then,
each grid was converted into a binary image with 1 as the area within the
buffers and 0 as the background.

Statistical analysis was conducted at three different levels of aggregation, the
entire study area, county and census tract. For the entire area, simple visual analysis
is adequate to reveal trends with 3 years of data for one single observation. At the
county level, there are 13 observations for 38 variables. At the tract level, there are
444 observations for 38 variables. These variables include: population densities,
population density changes, per capita income, and per capita income changes;
mean elevation, mean slope, percentages of county or tract in urban centre, road,
node, and shopping mall buffers; proportions in high-density urban use and low-
density urban use, as well as their changes over time, all for 1973, 1987 and 1999.
Simple correlation analysis was used to determine whether an association exists as
well as the magnitude and direction of the significant association. For data at the
tract level, a multivariate regression was also conducted to examine the relationship
between two urban class proportions (and their changes) as dependent variables
with a group of independent variables. Stepwise variable selection was employed to
determine which variables to include in the final model. A total of 12 models were
computed, which relate urban uses, terrain conditions, demographic and economic
variables and location measures to one another.

8.2.6 Dynamic spatial modelling

This part of the research was built upon the SLEUTH urban growth model (Clarke
and Gaydos, 1998). It is a cellular automaton model whose behaviour is controlled
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by the coefficients of diffusion, breed, spread, slope resistance, and road gravity.
This model was chosen because it is dynamic and future-orientated, conforming to
the essential requirement of urban growth simulation in this project. The behaviour
rules guiding urban growth in the model consider not only the spatial properties of
neighbouring cells but also existing urban spatial extent, transportation and terrain
slope. The driving force analysis (sections 8.2.5 and 8.3.2) found that transportation
and terrain conditions were significant factors driving landscape changes in Atlanta.
These behavioural rules therefore have realistically accounted for the driving forces
in the formation of edge cities in Atlanta. In this research, the SLEUTH model was
used as a tool to imagine, test and choose between two possible future urban growth
scenarios under different environmental and development conditions for Atlanta.

To implement the model, a set of input data were prepared:

1. Urban extent. A time series of urban extent layers was derived by combining
the two urban classes of the land classification maps for 1973, 1979, 1987,
1993 and 1999.

2. Roads. The ‘road’ layers contain not only major road networks but also node
points and large shopping malls. The major highways and node points were
extracted from the AND global highway database and then updated with
the 1973, 1987 and 1999 images. Three layers of large mall polygons were
extracted from the above images. A weighting system was established for
highways, nodes and malls, respectively. The layers of highways, nodes and
shopping malls in the same year were combined to form a single ‘road’ layer.
In this way, a ‘road’ layer was produced for 1973, 1987 and 1999, respectively.
The ‘road’ layer for the year of 2025 was produced by overlaying the 1999
roads with the improved roadways and new roadways proposed for 2025 by
the Georgia Department of Transportation.

3. Excluded area for development. Two layers of excluded areas were assembled.
The first layer is a binary image, consisting of water extracted from 1973
MSS image overlaid with various types of public land. These areas were
not allowed for urban development. This layer was primarily used for the
model calibration. For future growth prediction, another layer was built, with
probabilities of exclusion included. All excluded areas in the first layer were
preserved and assigned a value of 100. Additionally, this layer contains three
levels of buffer zones around major streams in the study area.

4. Slope and shaded relief. These were derived from USGS 7.5 min DEM. Each
layer was resampled into 240 m in grid size.

The next step was to calibrate the model for determining the best value of
each control coefficient previously mentioned. This involved the use of statistical
measures to quantify the historical fit between the modelled and historical data.
Due to time and computational resources constraints, the calibration was broken
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down into three phases. The coarse calibration was to block out the widest range
for each control coefficient. The fine calibration was to narrow down the ranges to
approximately 10 or less. The final calibration was to determine the best combina-
tion. One more step was conducted to determine the starting values used for future
growth simulation. The final values were: diffusion (71), breed (10), spread (32),
slope resistance (73) and road gravity (100).

Two possible planning scenarios for future urban development in Atlanta under
different policies and environmental conditions were designed and simulated. The
first scenario assumes that the factors for growth remain unchanged; thus, it may
be termed ‘continuation’, and provides a benchmark for comparison with the alter-
native growth strategy. To implement this scenario, the values of growth control
coefficients obtained from the model calibration were used as the starting values.
The 1999 urban extent data were actually used. The second scenario considers a
hybrid growth strategy in which both conventional suburban development and alter-
native growth efforts, such as smart growth and new urbanism, are addressed. This
scenario also considers environmental conservation by limiting development around
several predefined stream buffer zones. To implement these ideas, the starting values
for five growth control coefficients used in the first scenario were changed to slow
down the growth rate and to alter the growth pattern. The actual control coefficients
used for the second scenario were: diffusion (100), breed (100), spread (15), slope
resistance (40) and road gravity (200). The proposed transportation improvements
and new additions were considered here. The simulation of future growth was from
2000 to 2050 for both scenarios.

8.3 Results and discussion

8.3.1 Urban growth

Based on Figure 8.3 (left), the spatial expansion of high-density urban use is
clearly visible. In 1973, the high-density urban use was small, occupying only
2.85% of the total land area for Atlanta (Table 8.2). The outward spread is quite
clear in the 1979 and 1987 patterns, following the major transportation routes.
Between 1973 and 1979, the net addition was 8292 hectares, or a 27.90% increment.
The net addition was 16 265 hectares, or a 42.79% increment, between 1979
and 1987. These additions were primarily concentrated in several inner counties,
such as Fulton, Cobb, DeKalb and Clayton. Significant growth took place by
1993 and 1999, with net additions of 19 844 and 33 197 hectares, respectively.
These new development areas were highly concentrated in the northern and north-
eastern areas. The linearly concentrated pattern became more multinucleated. The
1999 distribution shows further enhancement of this transition as the spread took
place largely along transportation routes and around urban centres, particularly
in some peripheral counties, such as Coweta, Cherokee, Forsyth, Paulding and
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Figure 8.3 Spatial growth of the two major urban uses (Yang, 2002)

Fayette. In 1999, high-density urban use occupied 87 477 hectares, or 8.38% of
the total land area, which is about a 194.31% increase in land compared with
1973. The daily increment was approximately 6 hectares or 15 acres between
1973 and 1999.

The evolution of spatial patterns of low-density urban use, mainly residential, is
clearly perceived in Figure 8.3 (right). In 1973, low-density urban use occupied 76
910 hectares, or 7.36% of the total area. Although the low-density urban land shows
signs of spreading outward, its large share was clearly concentrated in the inner city
core and several inner counties. A somewhat linear pattern can also be seen along
several major transportation highways. Thus, the spatial pattern of low-density urban
use in 1973 was a form of concentration mixed with some degrees of dispersal.
Significant growth occurred in 1979 and 1987, with net additions of 52 264 and 48
651 hectares, respectively (Table 8.2). Most of the new additions occurred outside
the central city core, concentrating in four inner counties of DeKalb, Clayton,
Fulton and Cobb, and in three exterior counties of Gwinnett, Rockdale and Fayette.
Growth in the northern, north-western and north-eastern directions was quite clear.
The spatial distribution pattern became more dispersed. Low-density urban use
continued to grow after 1987. Most of the new development, however, took place
in the exterior metropolis. This widely spread-out pattern is a major indicator of
suburbanization. Quantitatively, low-density urban use occupied 282 959 hectares,
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or 27.10% of the total area in 1999, indicating a 267.91% increase between 1973
and 1999. The daily increment was about 22 hectares or 54 acres for the same
period.

Table 8.2 also indicates the continuing decline in cropland/grassland and forest.
The shrinking pattern of these two classes was proportional to the growth of the
two urban classes. In general, the decline of cropland/grassland and forest land
predominantly took place in the interior metropolis before 1987 but in the exterior
after 1987. Quantitatively, cropland/grassland occupied 159 345 hectares, or 15.26%
of the total study area, in 1973. It declined to 101 122 hectares (or 9.68%) by
1999. This represents a decrease of 36.54%, or a daily rate of 6 hectares (15 acres).
Similarly, forest declined from 750 366 hectares (or 71.85%) in 1973 to 545 148
hectares (or 52.20%) in 1999, thus representing a decrease of 27.35%, or a daily
rate of 22 hectares (53 acres) in land area.

The nature of the change is quite clear from Table 8.3. From 1973 to 1987, the
loss of forest land contributed to the overwhelming share of the growth of the two
major urban classes. High-density urban use had a net addition of 36 384 hectares,
of which 62.17% came from the loss of forest land (C5) and 33.24% resulted
from the loss of cropland/grassland (C3). The loss of cultivated/exposed land only
contributed to 4.59% of the increase in high-density urban use (C1). For low-density
urban use, 70.37% (C6) and 28.18% (C3) of the increase came from the loss of forest
land and cropland/grassland, respectively. The loss of cultivated/exposed land only
accounted for 1.45% (C1) of the net addition in low-density urban use. During 1987–
1999, the magnitude of these conversions generally increased and forest and crop-
land/grassland conversions still overwhelmed the growth in two major urban uses.

8.3.2 Driving force

For the entire study area, the two urban classes have increased while the crop-
land/grassland and forest classes have declined since 1973. At the same time,
population density and per capita income have rapidly increased, thus suggesting
their impact on the urban growth and landscape changes (Table 8.4). The mean
elevations for high-density urban use and forest have increased, while those for low-
density urban use and cropland/grassland have decreased during the same period.
This indicates that the land available for high-density urban development tends
to be at higher elevations, while residential-dominated urban development favours
relatively lower terrain. The mean slope gradient for each class tends to increase,
suggesting that terrain slope gradient has been an influential resistance for urban
development.

At finer spatial levels, the results of analysis are much more complicated as
the landscape changes and demographic, economic and terrain characteristics have
become more differentiated. The results of analysis for the two major urban classes
are discussed below at the county and tract levels.
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Table 8.3 Land use and land cover conversion statistics

Maps Nature of change code∗ Land conversion statistics

Year A Year B 1973–1987 1987–1999

Area (ha) (%) Area (ha) (%)

3 1 C1 1 669 0.16 3 029 0.29
3 2 C2 1 627 0.16 4 709 0.45
4 1 C3 12 094 1.16 11 085 1.06
4 2 C4 31 765 3.04 40 127 3.84
5 1 C5 22 621 2.17 28 586 2.74
5 2 C6 79 319 7.60 94 559 9.05
3 or 4 or
5

6 C7 3 653 0.35 6 226 0.6

All other
combinations

C0 891 534 85.37 855 960 81.86

∗C1, converted from cultivated/exposed land (3) to high-density urban (1); C2, converted from culti-
vated/exposed land (3) to low-density urban (1); C3, converted from cropland/grassland (4) to high-
density urban (1); C4, converted from cropland/grassland (4) to low-density urban (2); C5, converted
from forest (5) to high-density urban (1); C6, converted from forest (5) to low-density urban (2); C7,
converted from cultivated/exposed land (3) or cropland/grassland (4) or forest (5) to water (6); and
C0, all other combinations which are not considered here. Note that approximately 75% of total pixels
remain unchanged.

8.3.2.1 High-density urban use

At the county level, the proportions of high-density urban use for 1973, 1987 and
1999 were positively correlated with population density, urban centre proximity,
node proximity, mall proximity and highway proximity. The change in the high-
density urban use proportion from 1973 and 1987 was positively correlated with
population density change. Income and terrain factors did not exhibit a significant
statistical relationship with either the high-density urban use proportion or its change
through time.

At the census tract level, more delicate relationships were revealed. The propor-
tions of high-density urban use for 1973, 1987 and 1999 correlated positively with
road proximity, node proximity, urban centre proximity, population density and
mean elevation, but negatively with mean slope gradient. The variables accounting
for 45–49% of the variance in the 3 years’ land class proportions often included road
proximity, mean elevation, mean slope, per capita income and population density.
The change in high-density urban use proportion during 1973–1999 correlated posi-
tively with road proximity, node proximity, urban centre proximity, mean elevation
and mall proximity, but negatively with mean slope. The independent variables
that explained more than 53% of the variance in the class proportion change were
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population density change, mean slope gradient, mean elevation, mall proximity,
urban centre proximity and road proximity.

Statistical analysis indicates that population was more significant than location
factors in explaining high-density urban use change at the county level. At the tract
level, however, location and terrain conditions were clearly more significant than
population. This is because commercial and industrial developments (the two major
components of high-density urban use) were attracted to highways, node points and
urban centres.

8.3.2.2 Low-density urban use

At the county level, the proportion of low-density urban use (mainly residential) for
1973, 1987 and 1999 correlated positively with population density. Other variables
that correlated positively with low-density urban use proportion often included
urban centre proximity, node proximity, mall proximity, highway proximity and per
capita income. The mean slope gradient was found to correlate negatively with the
proportion of low-density urban use in 1987 and 1999. The change in low-density
urban use proportion during 1973–1999 correlated negatively with urban centre
proximity, mall proximity, node proximity and highway proximity.

At the tract level, the proportion of low-density urban use for 1973, 1987 and
1999 correlated positively with population density, node proximity and highway
proximity, but negatively with mean slope gradient. Other variables that correlated
positively with the low-density urban use proportion for at least 1 year included
per capita income and mall proximity. The variables accounting for 42–71% of the
variance in the 3 years’ class proportions included population density (3 years),
mean slope gradient (3 years), road proximity (1973 and 1999), mall proximity
(1987 and 1999), node proximity (1987) and mean elevation (1973). The change in
the proportion of low-density urban use during 1973–1999 correlated positively with
population density change but negatively with road proximity and node proximity.
The independent variables that explained about 41% of the variability in the class
proportion change during the same period were population density change, mean
elevation, road proximity and mean slope gradient.

Population has been the most important factor for explaining changes in the
proportion of low-density urban use at both the county and tract levels. At the tract
level, it is very clear that highway proximity and node proximity were conducive
to the rapid growth of low-density urban use, manifested by suburban housing.
However, as more suburban housing has been built, its correlation with the location
measures has become less important, thus explaining the decreasing value of the
correlation coefficient with time, as well as the negative correlation between the
proportion of 1973–1999 low-density urban use change and these location measures.
It is also interesting to note that the proportion of low-density urban use correlated
positively with per capita income for the years 1973 (0.62) and 1987 (0.16) only.
The weakening correlation in more recent years indicates that at the beginning
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Figure 8.4 Simulation of future urban growth under two different scenarios. Note that the
county boundary is overlaid

suburban housing was affordable only to people with higher income, but in recent
years, as the general affluence of the population has increased, more people have
been able to afford suburban housing.

8.3.3 Future growth scenario simulation

The progressive urban development as projected into the period 2000–2050 under
two different scenarios can be well perceived from Figure 8.4. It is clear that a
Los Angeles-like metropolis characterized by huge urban agglomerations would
emerge by around 2030 if current development conditions were still valid (Scenario
One). The vegetation area and open space in the 13 metro counties (excluding the
north-western mountainous area) would be very limited. In contrast, the simulated
urbanization under Scenario Two appears to be relatively restrictive, indicating that
the effort of slowing down urbanization through model parameterization has been
quite efficient.

Statistical measures reveal much more information (Table 8.5). Under Scenario
One, the total urban area for 2050 would be 1 286 ,692 hectares. The total net
increment in urban area with at least 50% probability would be 793 561 hectares, or
43.6 hectares/day on average, representing an increase of 160% between 1999 and
2050. The net urban increment as projected has been overwhelmingly concentrated
within 1999–2030, further confirming the finding based on graphical outputs that
a huge metropolis would take shape by 2030. As a result of such dramatic growth,
urban land would occupy approximately 78.67% of the total modelled area by 2050.
The average slope for urban land would increase from 4.87% in 1999 to 8.32%
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in 2050, implying that many steep, woody areas would be converted to urban use.
Forest distribution in Atlanta was found to be positively correlated with terrain
slope (section 4.2). Under Scenario Two, by 2050 the total urban area would be
906 134 hectares, or approximately 55.40% of the entire area. The total net urban
increment would be 413 003 hectares, or 22.2 hectares/day, indicating an increase
of 84% between 1999 and 2050. Apparently, the magnitude of urban growth as
projected under this scenario has been substantially suppressed. The mean slope
steepness for urban land would decrease from 4.87% in 1999 to 4.46% in 2050,
implying that many low-lying, flat areas would be converted to urban uses.

The spatial distribution of simulated urbanization under the two scenarios can
be discerned from Figure 8.4. For Scenario One, the projected urban additions
for the period 1999–2010 are largely adjacent to the 1999 urban pixels, which
can be viewed as a ‘continuation’ of urbanization. This corresponds to the fact
that the overwhelming share of net urban additions under the first scenario was
accounted for by organic growth. This type of urban growth actually represents
the expansion of existing urban pixels into their surroundings. The projected urban
additions during 2010–2030 are largely distributed over places far away from the
1999 urban land. Many projected additions are also found in western, north-western,
and south-eastern parts. Some large urban clusters can be clearly recognized. The
projected urban additions after 2030 are predominantly scattered over the western
and south-eastern parts. Under Scenario Two, the projected urbanization for 1999–
2010 is very limited. Most of the new additions are for the period 2010–2030,
represented by blue and green pixels in Figure 8.4. Numerous large urban clusters
can be clearly recognized, particularly in the southern and western parts.

Based on the above comparisons, it is found that the results of these two scenarios
are quite different. Scenario One illustrates that unchecked urban sprawl would
consume almost all of the vegetation and open space in the metropolitan area,
with the exception of the north-western mountainous area. The dramatic growth in
urban land, as projected under this scenario, would change the city’s spatial form
substantially, with numerous edge cities scattered over a huge area. This would
greatly deteriorate the quality of life in Atlanta. Scenario Two would cut down the
rate of urban growth by approximately 50%, compared to Scenario One. It would
preserve much more greenness and open space, including predefined buffer zones
along large rivers, streams and lakes. These preserved zones, although relatively
small in area (about 27 358 hectares), contain the most important fresh water
supplies, wetlands and floodplains for the metropolis. Therefore, Scenario Two
should be most desirable for future growth planning in Atlanta.

8.4 Conclusions

Escalating urban growth throughout the world has provoked concerns over the
degradation of our environment and the quality of life. How to optimize the
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development while minimizing its negative impacts becomes the ultimate goal of
urban sustainability, a world-wide agenda that has been promoted as a vital imper-
ative of international, national and local policies. Sustainable urban management
involves the design and implementation of effective policies and plans to manage
resources and provide services in cities. This in turn requires the introduction of
innovative methodologies and technologies that can help understand urban growth
dynamics and design environmentally sound development scenarios.

This study has demonstrated the utility of a loose-coupling approach to integrate
remote sensing, GIS and dynamic spatial modelling for sustainable urban manage-
ment. The entire research has gone through five major stages from the beginning
of data acquisition and collection. The primary data were a time series of satellite
images acquired by three Landsat sensors during 1973–1999. Other existing data,
consisting mainly of census surveys, transportation and digital elevation models,
were also collected, together with field surveys for ground truth acquisition. This
was followed by image classification to produce a time series of land use and
land cover maps from satellite data. Central to this work was the GIS-based image
reclassification procedure, designated to resolve the spectral confusion. The land
classification maps were then used to analyse urban growth and the nature of
change. This was built upon the combined use of post-classification comparison
and GIS techniques, which made possible the production of single-theme change
maps, which emphasize spatial dynamics. The driving force analysis was conducted
through a zonal-based approach to integrating biophysical data with socio-economic
data from census surveys. The major challenge here has been to harmonize a
variety of diverse data that differ in formats and projections, as well as parameter
measuring and sampling methods. The adoption of a multilevel observation strategy
was found to be useful for managing the MAUP. The last phase has been to incor-
porate several major driving forces into a dynamic urban model that was calibrated
with historical urban extent data derived from the satellite series. The model was
used as a tool to imagine, test and choose between two different scenarios under
various environmental and development conditions. Based on this research, it is
found that the integration of remote sensing, GIS and dynamic spatial modelling
has mutually reinforced the utility of these techniques. The integration has provided
insights that would not otherwise be available if spatial data were not organized in
a GIS environment and GIS were not integrated with remote sensing and dynamic
spatial modelling. Only through this integration can spatial information technology
be effective for sustainable urban planning and management.

This study has established a well-documented regional case study focusing on
Atlanta, well-known as America’s leading sprawl city. This research reveals that
every week, more than 100 acres of forest, green space and farmland were converted
into urban uses in Atlanta. Between 1973 and 1999, the rate of urban expansion
was 157% higher than that of the population growth, indicating the rapid and far-
reaching urban sprawl in Atlanta. The driving force analysis reveals that counties
with greater areas of urban growth tended to have larger demographic growth and
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higher socio-economic performance. Terrain and location conditions were more
significant factors at the tract level than at the county level. Better location condi-
tions have attracted more developments, and therefore urban growth and landscape
changes have been intensified along major transportation corridors and around major
urban centres. As more single-family housing units were built farther away from the
large urban facilities, location conditions have become less correlated with housing
development in recent years. The two scenarios designed with different environ-
mental and development conditions have largely represented the major possible
planning strategies for Atlanta. Scenario One simulated the continued growth trend
if the urban sprawl is allowed to continue. Scenario Two simulated the develop-
ment trend with a reduced rate and a different growth pattern. The modelling result
suggests that Atlanta would be the next Los Angeles by approximately 2030 if the
current growth rate and pattern do not alter. This will serve as a good warning
to planners in Atlanta. In contrast, the result from the Scenario Two shows that
much more greenness and open space, including buffer zones of large streams and
lakes, could be preserved. Accordingly, Scenario Two should be the more desir-
able for the future urban growth of Atlanta. This suggests a smart growth strategy
with emphasis on environmental protection, so that the ‘livability’ of the city of
Atlanta will be maintained for future generations. These findings should be useful
to those who need to manage resources and provide services to people living in
this rapidly changing environment. Given that many major metropolises across the
world face the growing problems caused by rapid urban development, the technical
frameworks developed in the current study focusing on Atlanta should be applicable
to other metropolises. This could improve our understanding of complex urban
growth dynamics, thus facilitating a sophisticated approach to sustainable urban
development.
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9.1 Introduction

It is said that many centuries ago, an Indian princess asked the Buddha to summarize
his philosophy for her. The wise man obliged, but when he brought his answer to
the lady, she asked for a more concise summary. This exchange was repeated several
times. Whenever the Buddha complied with her latest request, the princess kept on
demanding an even shorter version. Eventually she asked: ‘Can you express your
philosophy in just one word?’ Once more the Buddha obliged. The definition offered
was ‘Today’ (Scheurer, 1994, p. 3).

At a glance, it appears impracticable in such a diverse and multidisciplinary area
as urban vulnerability to environmental hazards to do what the Buddha did in
philosophy – express the essence of the field in a single word. After all, six
decades of considerable progress and outstanding achievements by hazards scholars
have not succeeded in reconciling discrepancies surrounding fundamental concepts
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within the field (White and Haas, 1975; Mileti, 1999). The meaning of such basic
terms as ‘disaster’, ‘hazard’, ‘risk’ and ‘vulnerability’ continues to be a matter of
controversy (Dow, 1992; Cutter, 1996; Cardona, 2004). A review of the literature
reveals considerable variation and fundamental conceptual differences among the
numerous approaches and models developed to tackle vulnerability, risk and other
hazard-related issues (Liverman, 1990; Dow, 1992; Cutter 1996; Rashed and Weeks,
2003; Cardona, 2004).

Despite all the controversies that exist in the field, we start this chapter with
a proposition that urban vulnerability may indeed be summed up in one word –
‘particularity’. As the literature suggests, the study of vulnerability is ecological
in nature (Kates, 1971; Burton et al., 1978; Andrews, 1985; Hewitt, 1997; Bolin
and Stanford, 1999; Fitzpatrick and LaGory, 2000; Wisner et al., 2004). As a
result, an uneven and highly changeable complex web of dynamics and ecological
factors, encompassing social, economic, cultural, political and physical variables,
shape the patterns of urban vulnerability and determine the course in which these
patterns evolve across space and through time. We refer to such context-dependent
characteristics of vulnerability as ‘particularity’ to emphasize the notion that urban
vulnerability can only be assessed in relation to a specific spatiotemporal context
and its underlying dynamics, which interact together to produce particular forms of
vulnerability.

We recognize that our attempt to describe the essence of vulnerability studies
in one word is a bold step, especially when the reader is reminded that the word
we use, ‘particularity’, has been central to philosophical tensions between various
accounts of risks in hazards research (Mustafa, 2005). Accordingly, we do not
expect the reader to accept our thesis as final. Rather, we invite the reader of this
chapter to explore the plausibility of our thesis and its implications for the ongoing
dialogue about the science of vulnerability (Cutter, 2001, 2003b) and the role of
geographic information science and technology in risk and vulnerability analysis
(Rejeski, 1993; Cova, 1999; Radke et al., 2000; Cutter, 2003a).

The approach we pursue in our inquiry in this chapter is both theoretical and
empirical. We first discuss epistemological positions on the particularity of urban
vulnerability, drawn from contemporary work on hazards and disasters, to make the
case for a place-based approach to vulnerability analysis. Next, we introduce the
theoretical constructs of an integrative GIS and remote sensing model for place-
based vulnerability analysis. We discuss how the proposed model could help resolve
the dilemma of devising vulnerability assessments that recognize particularities in
individual contexts, yet producing quantitative indicators to facilitate comparison
of vulnerabilities across time and space. We then present a case study in which the
model has been applied to assess the vulnerability of the metropolitan area of Los
Angeles, California. We draw upon the results of this case study and conclude the
chapter with a general discussion of integration issues in GIS and remote sensing
technologies, and how such integration can provide a starting point for the science
of vulnerability to evolve into a more robust field.
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9.2 Analysis of urban vulnerability: what is it all
about?

Vulnerability studies share in common the view that disasters are a product not only
of hazardous events but also of social, economic and political environments. This
is a crucial point indeed, as it puts vulnerability studies together under a unique
theoretical paradigm that is quite distinct from other paradigms in disaster research,
such as the technological-fix paradigm, which deems the geophysical processes
that produce hazardous events to be more significant. The vulnerability approach to
understanding urban disasters maintains the idea that calamities are poorly explained
by the character of the events that may trigger them, be they natural (e.g. earthquake,
flooding), technological (e.g. chemical release, dam failure), or caused by deliberate
human action (e.g. terrorism act, war). Further, it asserts that the same damaging
hazard could bring widely varying losses in societies, due to variations in social
and physical vulnerabilities across urban places.

Despite the general conceptual ground they share, scholars of vulnerability are
nonetheless divided amongst themselves on how to approach the question of vulner-
ability and the goals of its analysis. There have been several takes in the literature
on the epistemological positions of vulnerability scholars (for recent reviews, see
Wisner et al., 2004, pp. 19–20; Mustafa, 2005, pp. 568–569). On the one hand, there
is the realist view that emphasizes a set of common themes and elements to provide
a better theoretical understanding of the ‘real’ root pressures in global, regional
and national systems that shape the vulnerability profile of societies (Wisner et al.,
2004). Advocates of this view do not emphasize local particularities in their studies
and consider doing so as a subtle form of environmental determinism. On the other
hand, there are the pragmatist and constructivist views, which share a concern for
the practicality of the context in which vulnerability is analysed, although they differ
considerably in their methodological and philosophical foundations (Mustafa, 2005).
For pragmatists, the emphasis on context particularities helps to introduce vulnera-
bility analysis as a tool relevant to planners and decision makers. For constructivists,
it provides a better means to comprehend the reality of disasters and to connect to
local people.

Mustafa (2005) suggests that these above-mentioned epistemological differences
regarding the understanding and analysis of vulnerability should not be seen as being
in competition but rather as important complements. We concur with Mustafa’s
view and see it as a foundation upon which the recent idea that calls for a science
of vulnerability (Cutter, 2003b) will need to rest. At one level, the concept of
vulnerability in its broadest definition directs attention to the particular conditions
that influence how well a society can cope with disasters and how rapid and
complete its recovery can be. Findings of previous studies endorse the notion that
these conditions do not come from ‘outside’ the urban place, neither do they erupt
accidentally within it (Fitzpatrick and LaGory, 2000). Instead, they represent a
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product of everyday social life and ongoing urban dynamics that act upon the society
and control its mutual relationship with the environment (Mitchell, 1989; Wisner,
1993; Cutter, 1996; Hewitt, 1997; Turner et al., 2003; Tobin and Montz, 2004). At
another level, there is a need to situate the finer detail brought about from examining
local factors and particular patterns into a broader explanation of vulnerability, to
gain deeper insights regarding the interdependence of vulnerability and differences
between resources, societies and regions, and the interconnectedness among these
groupings over space and time (Dow, 1992).

Reconciling the various epistemological positions on vulnerability into a more
general analytical framework is therefore a central challenge to the emerging science
of vulnerability and its role in ‘help[ing] us understand those circumstances that
put people and places at risk and those conditions that reduce the ability of people
and places to respond to environmental threats’ (Cutter, 2003b, p. 6). Our use of
particularity as a keyword to summarize the essence of vulnerability analysis by
no means negates the presence of a ‘universal’ knowledge of vulnerability, derived
from important contributions by hazards scholars over the last two decades. The
argument we make by using the ‘particularity’ keyword, however, is that for such
knowledge to be effective in advancing risk-reduction goals, it is not enough to be
credible (i.e. reasonably true and generally applicable). It also has to be salient (i.e.
relevant to the needs of decision makers in a given context) and legitimate (i.e. not
biased to a certain research culture) (ICSU, 2002). We argue that one path to create
reliable, salient and legitimate knowledge of urban vulnerability lies in devising
analytical approaches capable of acknowledging the contextual particularities of
vulnerability while still allowing that knowledge to be transferred from one setting
to another. In this chapter, we introduce one such approach and show the role that
GIS and remote sensing can play in translating this place-based approach into a
replicable methodology.

9.3 A conceptual framework for place-based analysis
of urban vulnerability

As we have argued above, urban vulnerability is a place-dependent process residing
in the ‘socio-ecological’ urban context; where ‘social ecology’ is a term used
to emphasize the people–nature relationship (Andrews, 1985; ICSU, 2002). In
order for such ‘place-based’ knowledge of vulnerability to be salient, it cannot be
simply imported from the stock of universal knowledge (ICSU, 2002). It needs to
be endogenously generated. Likewise, the socio-ecological contexts vary greatly
between cities and even between neighborhoods within a given city. Consequently,
the goals of urban vulnerability analysis (i.e. knowledge needs) are expected to
vary too, to ensure legitimacy of the final product.

To illustrate the interrelationships between the place-based and universal levels of
knowledge of vulnerability, and the way in which insights gained at local levels can
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Figure 9.1 Simplified conceptual framework illustrating the interrelationships between the
place-based and universal levels of knowledge of vulnerability

contribute to fundamental knowledge accumulated at the global level and vice versa,
we present a simplified, general conceptual framework for vulnerability analysis in
Figure 9.1. We have drawn on the insights of the vulnerability literature to establish
the theoretical constructs of the proposed framework. We borrowed from Hewitt’s
ecological analysis of risk (Hewitt and Burton, 1971; Hewitt, 1997), Mitchell’s
contextual framework of hazards (Mitchell et al., 1989), Cutter’s hazards-of-place
model (Cutter, 1996; Cutter et al., 2000), and Mileti’s systems approach to disasters
(Mileti, 1999), the idea that patterns of vulnerability to hazards are contingent upon
the physical, technological, social, economic and political realities of the system
under consideration. We also have incorporated into the proposed framework some
elements of Andrews’ model of ecological risk intervention (Andrews, 1985) and
Turner II et al.’s framework for vulnerability to climate change (Turner et al., 2003),
specifically the conception of urban areas as socio-ecological systems and the need
to illuminate the nested scales of the vulnerability problem. Finally, we have used
some elements of the ‘pressure and release’ model of vulnerability (Blaikie et al.,
1994; Wisner et al., 2004) to convey the idea that locally focused studies and
actions are of limited value if they do not account for the broader forces that affect
the regional and local dynamics of vulnerability.
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The framework shown in Figure 9.1 envisions the world as a hierarchy of multi-
scale socio-ecological systems. A socio-ecological system at a given scale of the
hierarchy encompasses the landscape of place(s) considered at this scale, i.e. neigh-
borhood, city, region, country, as well as the people who reside in this landscape,
their culture and the way in which they organize their lives. The vulnerability of
a socio-ecological system at any hierarchical level is considered a collective func-
tion of the system’s resistance, its resilience, and interventions measures applied
at that level. System resistance refers to the coping capacity of the system prior
to a disaster�It represents a combination of all the strengths and resources (e.g.
physical, institutional, socio-economic, skilled personal, public awareness) available
within a given system to face adverse consequences that could lead to a disaster.
System resilience refers to the degree to which a system is capable to return to its
normal conditions after a disastrous event. Intervention measures denote a range
of risk reduction and mitigation measures applied to both building resilience and
strengthening the system’s resistance.

Generally speaking, the framework sets three main characteristics for the form
of knowledge that needs to be generated from urban vulnerability analysis:

1. To help explain the differential losses between people, ecosystems, and phys-
ical features due to disasters at a given level in the hierarchy (i.e. the focal
system).

2. To evaluate the ability of the focal system to absorb the impact of disasters
(i.e. system resistance) while continuing to function and recover from losses
(i.e. system resilience).

3. Ultimately, to determine the best options available to devise risk reduction
measures.

The hierarchy in the framework has important implications on the forms of knowl-
edge that could be generated, and consequently on the above-mentioned goals of
vulnerability analysis.

First, the goals of vulnerability analysis, the problems it addresses and the factors
and issues considered will vary by scale. What this means is that we cannot compare
two systems, A and B, if they belong to different levels in urban hierarchy (i.e. if A
represents a city and B represents a county). Second, the notion of hierarchy draws
attention to the fact that any system in the hierarchy, whether large or small, is
made up of smaller parts (a suprasystem) and at the same time is part of some larger
whole of which it is a component (a subsystem). Consequently, understanding the
vulnerability of a focal system (i.e. the level chosen to receive primary attention)
requires the observer to attend both to the knowledge of vulnerabilities generated
at the subsystems of that focal system and to the larger processes and dynamics
operating at the suprasystem to which that focal system is related (Andrews 1985;
Anderson et al., 1999; Turner et al., 2003). This means that one cannot compare
the vulnerability of two focal systems, A and B, even though both are at the same
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level of hierarchy, unless they are part of the same suprasystem. For example, one
may be able to compare the vulnerability of two cities belonging to Los Angeles
County, California, but this comparison would be difficult if the cities belonged to
different counties and if the processes found to be operating in these counties were
different. It also means that the city A might be relatively more vulnerable than city
B at one point of time and less vulnerable at another point of time, due to changes
in the processes operating at the suprasystem to which they both belong.

Third, the hierarchy in the proposed framework views knowledge of vulnerability
as a continuum from the particular to the universal and vice versa, as Mustafa
(2005) has suggested regarding the complementary relationship among the epis-
temological positions in the field. As represented in Figure 9.1, the production
of universal knowledge about vulnerability is accumulated and regularly updated
through knowledge of vulnerability particularities generated at the lower levels of
the hierarchy. These particular forms of knowledge at the lower levels are grad-
ually generalized as we move to the upper levels in the hierarchy. In turn, the
universal knowledge of vulnerability formulated at the upper levels is used to direct
investigations into vulnerability conducted at lower levels. Finally, the proposed
framework includes an axis for intervention measures that spans the hierarchy of
socio-ecological systems. This axis emphasizes the idea that the goals of vulnera-
bility analysis and decisions aiming at reducing risks are not quite the same across
different scales in the hierarchy. At a regional scale, for example, decision makers
may be concerned with the development of logistical and strategic plans to allocate
resources. Therefore, it may be sufficient to crudely identify those areas that may
experience higher degrees of damage in case of disasters. At the community level,
on the other hand, it is necessary to have a thorough analysis of how the urban place
will cope with a disaster to provide more specific intervention measures. Hence,
the analysis would need to detail the behavior of various urban subsystems, such
as transportation, public facilities, infrastructure, etc.

9.4 Integrating GIS and remote sensing into
vulnerability analysis

The rest of this chapter is devoted to illustrating how GIS and remote sensing
can be integrated to translate the conceptual framework presented in Figure 9.1
into an applied model for place-based vulnerability analysis. The idea of context
particularity implies locational variations in the outcome of vulnerability analysis
as a consequence of spatial (and temporal) variations in underlying factors. These
locational variations prompt the need for a spatially explicit model of vulnerability
analysis. A model is said to be spatially explicit if the inputs and outputs of this
model vary according to spatial location (Goodchild and Janelle, 2004). The value
of using GIS and remote sensing in translating the proposed conceptual framework
into an applied model for urban vulnerability analysis arises directly from the
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capabilities of these technologies in supporting spatial analysis and decision making,
and the generation of place-based knowledge.

Based on the earlier discussion in this chapter, it can be argued that the extent
to which GIS and remote sensing technologies are effectively used in the context
of vulnerability analysis depends on the ability to balance two competing demands
(Rashed and Weeks 2003). The first demand is offering a replicable way for
researchers as well as planners and decision makers undertaking local risk reduction
efforts to generate concrete profiles of vulnerable communities and to monitor
changes in these profiles over time. The second is being able to bring together
divergent perspectives and epistemological positions on urban vulnerability in order
to test related theories and hypotheses, thus establishing links between place-based
and universal levels of knowledge about vulnerability. Such links can ultimately
improve our understanding of the interrelations among various contextual factors
and global pressures that produce vulnerability patterns.

To meet these demands, Rashed (2006) suggests the following design criteria for
integrative GIS and remote sensing place-based vulnerability analysis:

1. Emphasize the use of geospatial resources, i.e. software tools, remotely sensed
images, GIS data layers, census data, etc., that are generally available to
planners and decision-makers in any reasonably medium-sized urban area.

2. Recognize the divergent perspectives on urban vulnerability.

3. Be multihazards-based.

4. Incorporate policy and more explicit planning components.

5. Generate quantitative parameters that allow for the comparison of differential
vulnerability within the focal system.

6. Involve a spatiotemporal modelling engine for urban dynamics that will allow
us to collect evidence to support or reject alternative hypotheses concerning
the causal linkages between vulnerability, and the social and physical charac-
teristics of urban places, as well as the effects of planning policies.

Building on the above-listed criteria, Rashed (2006) proposed a procedure for
place-based vulnerability analysis using GIS and remote sensing. In the following
sections, we review this model of urban vulnerability analysis and then report on
the findings of a case study that represents an initial attempt to test the applicability
of the proposed procedure.

9.5 A GIS–remote sensing place-based model for
urban vulnerability analysis

The framework in Figure 9.1 illustrates the degree of complexity involved in
vulnerability analysis and draws attention to the value of a place-based analysis in
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the production of context-derived knowledge of urban vulnerability. Regardless of
the spatial scale, the conception of place as a socio-ecological system entails the
presence of causal linkages among an array of factors that potentially affect the
vulnerability of the coupled human–environment system in a place (Turner et al.,
2003). Accordingly, the integrated GIS–remote sensing procedure of place-based
vulnerability analysis shown in Figure 9.2 is centred on a dynamic causal model that
adopts a systems-thinking approach to explain how vulnerability patterns arise from
adverse interactions between and among the components of the socio-ecological
system under consideration (Rashed 2006).

Causal models can be orientated in one of two ways: starting with a set of
causes and examining their consequences, or starting with a set of consequences and
moving down to their causes. The model shown in Figure 9.2 uses the latter path,
through a distinctly spatial induction approach to vulnerability analysis. Inductive
reasoning acknowledges the particularity of urban places and the need for generating
place-based knowledge of vulnerability without assuming any a priori hypotheses.
Spatial induction means that the problem of vulnerability can be conceptualized as
a spatial search problem through which a particular geographic place or region is
first screened for evidence of vulnerability. This is done by examining the range of
potential losses that may be caused by hazards in an urban place and working back
to a measure of the vulnerability of that place. The derived measure of vulnerability
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is then utilized as an instrument to learn about the range of local factors influencing
vulnerability, which might be hidden to the observer or seem quite remote from
the hazardous event. This local-generated knowledge can ultimately help devise
effective and sustainable risk reduction policies.

To implement the idea of spatial screening, the model proposes the utilization
of current advances in geospatial techniques to simulate actual and hypothetical
disaster experiences of single or multiple hazards in a particular region. Each
simulation will show how potential damages or losses (risks) from a simulated
hazard are distributed across the region, assuming that risk=hazard×vulnerability,
when several simulations are run using a single set of data pertaining to an urban
region at a given point of time (i.e. the particularities of an urban area, and hence
vulnerabilities, are controlled for). Variations in simulation results then become
a function of the type, location and magnitude of the hazard being simulated.
Finding the most vulnerable areas (hot spots of vulnerability) within the urban
region then becomes a matter of: (a) ranking urban areas based on the severity
of losses calculated from each simulation and (b) searching the region for those
areas that maintain relatively high ranks across all the simulation scenarios. These
areas are deemed the most vulnerable because maintaining a high rank across
different scenarios implies that an area is likely to experience significant losses
regardless of the hazard type, originating source or magnitude. Hence, the losses
in that place can directly be attributed to its vulnerability. Once areas with high
levels of vulnerability are located (the hot spots), spatiotemporal comparisons to
areas with lower levels of vulnerability (the cold spots) can be conducted to identify
differences and commonalities in their social, physical and political characteristics.
As shown in Figure 9.2, the process may be repeated using other datasets that
describe the status of the urban region at other points of time. The results can then
be utilized to improve our understanding of the relative importance of the various
factors influencing vulnerability over space and time, and to dig deeper into the
underlying processes amplifying or diminishing vulnerability.

9.6 An illustrative example of model application

To illustrate the utility of the model, we present in this section a first application
in a pilot case study from Los Angeles County, California. Due to the exploratory
nature of this case study, we have limited our investigation to a single context (Los
Angeles County), a single hazard (earthquakes), a single date (1990) and a single
question, relating to the links among differential physical and social vulnerabilities
to urban earthquakes and urban environmental conditions, as measured from satellite
remote sensing. The purpose of the case study is to give a practical example of
carrying out place-based vulnerability using GIS and remote sensing technologies.
Hence, a full discussion of the technical details encountered in the implementation
of this model is beyond the scope of this chapter. We refer interested readers to
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Rashed and Weeks (2003) and Rashed et al. (2003), in which extensive discussions
of the technical developments that have contributed to the present model can be
found, especially those related to the simulation of hazards, the identification of
vulnerability hot and cold spots, and the quantification of urban morphology through
spectral mixture analysis of remotely sensed imagery. In this chapter we will only
touch briefly upon the technical issues deemed necessary for demonstrating the
utility of the model and for the interpretation of its results.

9.6.1 Study area

The diverse social and physical character of Los Angeles County makes it an ideal
study site for testing the capability of using GIS and remote sensing in generating
context-specific knowledge of the relative importance of social and physical vari-
ables contributing to the overall vulnerability profile of urban communities in this
region. Los Angeles County is one of the most populous and ethnically diverse
places in the USA (Gordon and Richardson, 1999). Segregation patterns of ethnicity
and socio-economic classes in Los Angeles, accompanied by successive waves of
economic restructuring and population expansion, have been reflected in the built
environment and the physical structure of urban form within the region (Rubin,
1977; Allen and Turner, 1997; Modarres, 1998). For example, Li (1998), comparing
areas in Los Angeles dominated by population groups from China and Indochina
vs. those dominated by groups from Taiwan and Hong Kong, showed that even the
micro-divisions within the same ethnicity have their geographical expression in the
spatial differentiation of the region’s urban landscape.

The study area has witnessed several earthquake events in the past century.
The most recent was an M6.7 earthquake which originated near Northridge on
17 January 1994, in which 57 people were killed, 9000 were injured and damage
exceeded $25 billion (SSC, 1995). The Northridge earthquake has raised many
doubts with regard to levels of vulnerability in a modern urban environment gener-
ally designed for seismic resistance (Bolin and Stanford, 1998). Therefore, formu-
lating an understanding of the linkages among social and physical vulnerability
patterns to earthquake hazards in Los Angeles County can ultimately aid in the
formation of policies in anticipation of the problems accompanying urbanization
processes and demographic shifts in this dynamic region.

9.6.2 Data

The unit of analysis (focal system) utilized in this case study was the census tract. In
this case study, we investigated a total of 1608 census tracts covering approximately
3220 km2 of the entire urbanized area of Los Angeles County. Most of the spatial
and aspatial data utilized in the analysis were obtained from the inventory datasets
available from the US Federal Emergency Management Agency (FEMA) and built
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into HAZUS, the software we used for simulating damage loss from earthquakes
(FEMA-NIBS, 1999). Data included inventories of building square footage and
value, population characteristics from the 1990 census, costs of building repair, and
certain basic economic data. Data for transportation and utility lifelines were also
included, as well as several layers for faults, geological conditions, and the locations
of the epicentres of past earthquakes. In addition, we utilized other population
datasets from the US Census Bureau, and digital maps for soil and slope instability
and liquefaction potential.

The satellite data utilized in the remote sensing analysis included a subset (3113
lines × 4801 samples) from a Landsat TM image acquired on 3 September 1990
(path 41, row 36). The acquisition date of this image corresponds reasonably well
to the 1990 US Census (taken in April 1990). In addition to the multispectral image,
a set of 1.0 m spatial resolution aerial photos were used to aid in the validation of
the results.

9.6.3 Identifying vulnerability hot spots

Identification of vulnerability hot spots in Los Angeles was accomplished through
an empirical model developed by Rashed and Weeks (2003) for the analysis of urban
vulnerability to seismic hazards (Figure 9.3). The Rashed–Weeks model combines
elements from the techniques of multicriteria evaluation and fuzzy systems analysis
(Malczewski, 1999; Jiang and Eastman, 2000) to generate vulnerability scores
for urban places. The model was built on top of a robust simulating engine of
damage from earthquakes called HAZUS (HAZards in the US) developed by FEMA.
HAZUS utilizes methods that have been tested by the State of California Office
of Emergency Services and calibrated with data from earthquakes that occurred
in sites located within our study area. It also has the capability to generate loss
estimates at the census tract level, and this is very important to establish links with
social measures of vulnerability derived from census data.

As illustrated in Figure 9.3, there are seven main stages in applying the Rashed–
Weeks model of vulnerability analysis. The first stage is the selection of evalua-
tion criteria based on damage estimates to be generated from the simulation. The
following criteria have been used as basis of deriving the results presented below
(Rashed and Weeks, 2003):

1. Criteria for social risks, including casualties, percentage of households that
might seek temporary shelter after a disaster (a proxy for short-term social
losses), and total economic cost required for the replacement, reconstruction
and recovery of residential buildings (a proxy for long-term social losses).

2. Criteria for physically-induced and engineering risks, including collapse of
structures and loss of contents, area of land that might be burned due to
induced fire, and amount of debris.
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Figure 9.3 Rashed–Weeks model. Adapted from Rashed, T., and J. Weeks (2003) Interna-
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3. Criteria for urban systemic risks which may influence the emergency response
and management activities following a disaster, including percentage of loss in
functionality for hospitals, fire and police services, power utilities, highways
and bridges.

The second stage of the Rashed–Weeks model is the simulation of hazards to
explore the combined effects of multiple hazards on a particular region according
to multiple scenarios. In the third stage, loss estimates created from a scenario are
standardized through a ‘fuzzification’ process, which recasts values of criteria into
statements about set membership using linguistic terms (high, low) (Malczewski,
1999). In the fourth stage, the fuzzified criteria are compared pairwise, using the
analytical hierarchy process (AHP) developed by Saaty (1980) in order to generate
a set of weights for the evaluation criteria. In the fifth stage, the weighted criteria
are aggregated into a one-dimensional array of rules based on a fuzzy additive
weighting method. These rules are then used to calculate the membership degree of
each census tract in hedged fuzzy sets, which represent the linguistic expressions
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of the damage states (lower-, medium-, or higher-risk). Stages three to five can be
repeated for additional scenarios. In the sixth stage, the ‘higher-risk’ fuzzy layers
produced from all the scenarios are used to locate hot spots of urban vulnerability by
identifying those locations that are frequently assigned to higher damage estimates,
regardless of the hazard type or source. Finally, in the seventh stage, sensitivity
analysis is conducted to determine the effects of simulation parameters on the final
output.

The results from applying the Rashed–Weeks model to Los Angeles County based
on data from 1990 are presented in Figure 9.4. The maps shown in Figure 9.4A
represent the results of the simulation of five earthquake scenarios (four determin-
istic and one probabilistic). These results were produced by applying the evaluation
criteria to obtain a final fuzzy set that represents an index of higher risk in each
scenario. Darker areas indicate places with higher damage estimates in the scenario.
The map shown in Figure 9.4B represents the distribution of higher-vulnerability
values in Los Angeles County derived from the resultant simulation maps of earth-
quake risks. In this map, darker areas in the figure represent places with higher
vulnerability, while brighter areas represent places with lower vulnerability. A visual
inspection of the map shows that census tracts with a higher degree of membership
in the higher-vulnerability index (i.e. vulnerability hot spots) are clustered in the
NW quadrant of Los Angeles County, near the cities of San Fernando and Burbank.
As we move away from this quadrant, the degree of membership decreases, and so
does vulnerability.

9.6.4 Deriving remote sensing measures of urban morphology in
Los Angeles

9.6.4.1 MESMA

The model in Figure 9.2 utilizes remote sensing techniques to understand how
the hot and cold spots generated from the simulation physically differ in terms
of land cover composition and urban spatial structure. The rationale behind this
analysis is that patterns of urban morphology represent the locus of the diversity of
engineering, socio-economic and political interactions within urban places. Thus,
if differences are found among hot and cold spots of vulnerability in terms of the
physical composition and spatial configuration, this could suggest ways in which
urban morphology might be manipulated through sustainable policies, to reduce
vulnerability to hazards. It could also provide a means to monitor progress toward
sustainable hazards mitigation within a giving urban context.

A recurrent theme in several studies in remote sensing has been related to the
derivation of summary indicators of the physical components of urban areas. This
type of analysis has traditionally been limited due to the spectral heterogeneity of
urban features in relation to the spatial resolution of the remote sensors (Weber,
1994), especially true in the context of multispectral images with medium spatial
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resolution, such as those provided by Landsat satellites. Because of this spectral
heterogeneity, there is a need to deal with a complex mixture of spectral responses
(Forster, 1985).

To address the spectral mixing problem and to obtain more representative
measures of the composition and structural patterns of urban land cover in the
metropolitan area of Los Angeles, the remote sensing analysis task was accom-
plished in the present case study through the application of multiple endmember
spectral mixture analysis (MESMA) (Rashed et al., 2003) and landscape metrics.
The MESMA approach, originally developed by Roberts et al. (1998), is based on
the concept that, although the spectrum in any individual pixel can be modelled
with relatively few endmembers, the number and type of endmembers are variable
across an image. In this sense, MESMA can be described as a modified linear
spectral mixture analysis (SMA) approach, in which many simple SMA models
are first calculated for each pixel in the image. The objective is then to choose,
for every pixel in the image, which model amongst the candidate models provides
the best fit to the pixel spectrum while producing physically reasonable fractions.
The procedure of applying MESMA to the 1990 Landsat TM image (Figure 9.5) is
described in detail in Rashed et al. (2003).

The results from the MESMA were used in two ways to describe spatial variation
in the physical conditions between the census tracts in Los Angeles in 1990. The
first way was the calculation of an average normalized measure per census tract
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for each of the four land cover categories of derived MESMA: vegetation, soil,
impervious surface and water/shade (Figure 9.5). The normalization was achieved
by first summing up the fractional abundance of each category within each census
tract, then calculating the ratio of the total fractional abundance to the census tract’s
area. The product of this process was a normalized value (range 0–100) per census
tract for each of the four land cover categories, indicating the average abundance
of the land cover within that tract.

The second way of utilizing remote sensing measures in the present study was
the derivation of second-order measurements from MESMA fractions that described
the configuration (form) of the census tracts in terms of urban land cover. The
use of landscape metrics in the analysis of urban landscape patterns is one of
the topics that recently received increasing attention in the urban remote sensing
community (Geoghegan et al., 1997; Alberti and Waddell, 2000; Parker et al.,
2001; Herold et al., 2002, 2003). Landscape metrics are indices developed for
categorical map patterns, based on both information theory and fractal geometry
(Herold et al., 2002; McGarigal et al., 2002). Categorical map patterns represent
data in which the ecosystem property of interest is represented as a mosaic of
patches. The definition of patches is imposed according to a phenomenon of interest
and only meaningful when referenced to a particular scale (McGarigal et al., 2002).
For example, the urban landscape of Los Angeles can be described as a mosaic
of census tracts. The census tract in this case can be thought of as a patch that is
relatively homogeneous in terms of social and physical conditions. Similarly, at a
larger scale, a census tract can be viewed as a mosaic (or landscape) of its own,
consisting of smaller patches of land cover classes represented by a collection of
pixels.

Unlike the soft classification nature of MESMA results, landscape metrics operate
upon a hard or crisp classification assumption. Therefore, before landscape metrics
were used in the present study, MESMA fractional images had to be reclassified,
such that each pixel within any census tract corresponded to one, and only one,
class of land cover. A threshold of 60% was arbitrarily chosen, assuming that when
a given land cover class occupies 60% or more of a pixel, then it is possible to
say that this pixel generally belongs to that land cover class. When fraction values
within a pixel failed to meet this criterion, then a decision role was applied to assign
a class to that pixel according to what class the majority of neighbourhood pixels
within a 3 × 3 window had.

The next step was to select a subset of landscape metrics to measure the spatial
properties of census tracts in Los Angeles. Two types of metrics were used. The first
was the class-level metrics, which were applied to zones of land cover types within
census tracts (i.e. each zone of land cover category was considered a landscape
made of individual pixels or patches). The second type was the census tract-level
metrics, which treated each census tract as a landscape made of zones or patches of
land cover categories. Tables 9.1 and 9.2 list the subsets of metrics that have been
used on either the land cover class or census tract levels.
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Table 9.1 Description of landscape metrics applied at the land cover class level within
a census tract

Class metrics

Metric Property measured
PD (patch density) Areal composition

LPI (largest patch index) Areal composition

PAFRAC (perimeter-area fractal
dimension)

Shape complexity

PLADJ (percentage of like adjacencies) Degree of aggregation of land cover class

AI (index of aggregation) Degree of aggregation of land cover class

IJI (interspersion and juxtaposition
index)

Degree of interspersion or intermixing of
land cover class

DIVISION Diversity of land cover class
COHESION Physical connectedness of the land cover

class

Table 9.2 Description of landscape metrics applied at the census tract level

Landscape metrics

Metric Property measured
PD – (patch density) Areal composition

LPI (largest patch index) Areal composition

PAFRAC – (perimeter-area fractal
dimension)

Shape complexity

CONTAG Overall fragmentation of land cover
classes

AI – (index of aggregation) Degree of aggregation of land cover
classes

IJI – (interspersion and juxtaposition
index)

Degree of interspersion or intermixing
of land cover classes

SIDI – (Simpson’s diversity index) Diversity of land cover classes

9.6.5 Deriving an index of wealth for Los Angeles County

Information on wealth was used in this case study as a proxy for access to
resources, which in turn was used as an indication of the distribution of social
vulnerability. Although this wealth index is not as sophisticated and comprehensive
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as other social vulnerability indices proposed in the literature, e.g. that of Cutter
et al. (2003), we deem it satisfactory for the present study, given its exploratory
and illustrative purposes.

To calculate an index of wealth for Los Angeles in 1990, data were used from
the US Census Bureau’s Survey of Income and Programme Participation (SIPP) to
calculate the ratio of wealth to income at each income level by race and by age
group. The next step was to use data from the 1990 Public Use Microdata Sample
(PUMS) to convert the ratios derived from the SIPP data to the closest income
categories that are available in the 1990 census of the study area. The averaged
values represented multipliers to be applied to a table that included information
on the number of households by income category and race by age for each census
tract. Finally, the average household wealth was calculated for each census tract,
weighted by the average income, race and age of householders in the census tract.
The outcome of this process was a wealth index for Los Angeles County in 1990,
which we utilized as an indication of the overall level of access to resources (and
hence social vulnerability) in each census tract.

9.6.6 Spatial filtering of variables

Although spatial autocorrelation has long been a concern in geographic litera-
ture, it has not yet been routinely addressed in remote sensing applications or in
vulnerability analysis (Rindfuss et al., 2004). However, it is well known that data
aggregated at particular spatial units, such as census tracts, will be more similar to
data for other nearby spatial units than they are to more distant spatial units, because
of the bias caused by spatial autocorrelation (Getis and Ord, 1992). Cliff and Ord
(1981) identify two general approaches for resolving these problems: (a) filtering
spatially autocorrelated data to account for spatial autocorrelation; or (b) modi-
fying statistical models to accommodate spatial autocorrelation (such as spatially
autoregressive models).

In the present study we utilized the former approach, following a method of
spatial filtering suggested by Getis (1995). Getis’ spatial filtering technique involves
the extraction of the spatially autocorrelated portion of each of the variables to be
input in an ordinary least-squares (OLS) linear regression analysis and then the use
of the spatial portion as a separate factor (Getis, 1995; Scott, 1999). By solving
the OLS regression model with the extracted filtered and spatial components of the
variables, the spatial autocorrelation is removed from the residuals and incorporated
into the model to help predict variation in the dependent variable. Summing the
absolute values of the statistically significant standardized beta coefficients then
allows us to determine the proportion of explained variation that is due to the spatial
component, whereas the remainder of the explained variation is accounted for by the
filtered (non-spatial) component. The ratio of the square of the beta coefficients for
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any two independent variables indicates their relative contribution to the prediction
of the dependent variable.

9.6.7 Generating place-based knowledge of urban vulnerability in
Los Angeles

9.6.7.1 Statistical models

Three statistical models were developed in order to: (a) demonstrate the utility of
the model in generating place-based knowledge of the relative importance of the
urban morphological social and physical conditions in shaping the spatial patterns
of urban vulnerability to earthquakes in Los Angeles County; and (b) compare
this place-generated knowledge against conventional wisdom of vulnerability. The
first model tested the null hypothesis that the index of wealth (IW), used as a
proxy for social vulnerability, was not significantly correlated with the index of
higher vulnerability (IV), calculated from the simulation of earthquake risks. The
second employed a step-wise OLS regression to examine the extent to which
wealth is predicted exclusively by remote sensing measures describing urban phys-
ical characteristics. The model employed IW as a dependent variable, and the
following independent variables: (a) MESMA fractional measures of vegetation,
soil, impervious surface and water/shade normalized by census tract; and (b) land-
scape metrics calculated as second-order measures of MESMA results (listed in
Tables 9.1 and 9.2). The format of this model, after applying the spatial filtering,
was as follows:

Wealth�IW� = �normalized MESMA fractions filtered�

+ �normalized MESMA fractions spatial�

+ �landscape metrics filtered� + �landscape metrics spatial� + error
(9.1)

The third model was a binary logistic regression model that examined the presence
or absence of higher vulnerability (IV) based on values of a set of explanatory
variables. Logistic regression was used in this part of the analysis because of the
ordinal nature of the fuzzy measure of vulnerability, which allowed for a binary
division of the dependent variable into high (1) and low (0) using a threshold
value. The explanatory variables used in this third model included the index of
wealth (IW), as well as a set of remotely sensed measures that were found to be
statistically associated with wealth in the OLS regression model. The general form
of this model was:

Logit�Pi� = log �Pi/�1 − Pi�� = a + bXi (9.2)
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where i represents the binary value of vulnerability, Pi is the conditional probability
of Yi given Xi, a is the intercept, b is the vector of slope parameters and Xi is the
vector of explanatory variables (wealth and remotely sensed measures).

9.6.7.2 Results of correlation between vulnerability and wealth

Table 9.3 shows Pearson’s correlation coefficients between vulnerability and wealth.
The table reports a correlation value of 0.11 between vulnerability (IV) and wealth
(IW), indicating a low, but nonetheless statistically significant, negative correlation
at the 0.01 level, leading us to reject the null hypothesis that wealth, as a proxy for
social vulnerability, is not associated with vulnerability values estimated through the
simulation of biophysical risks in urban areas. The correlation between the IW and
the spatial portion of the IV in Table 9.3 indicates that only the spatial components
in the two indexes were significantly correlated, suggesting more evidence for the
importance of ‘where you are’ in the distribution of vulnerability in Los Angeles.
While these correlation values were not as high as one may have anticipated, based
on what the literature suggests, the significance of such results becomes more
apparent if we recall that the IV and IW represent the results of two totally inde-
pendent methods for measuring vulnerability. Thus, while the negative correlation
between wealth and vulnerability found in the model conforms to the universal
wisdom, the relatively low correlation value means that the most vulnerable phys-
ical elements do not always overlap with the most vulnerable populations within
Los Angeles. This finding is important because it is almost identical to what Cutter
et al. (2000) found from an analysis conducted in Georgetown County, South
Carolina, suggesting a pattern that is likely to be common in other urban places in
the USA.

Further, some previous studies (e.g. Scott, 1999; Weeks et al., 2000) have
suggested the existence of a lag between change in the social environment and
the corresponding change that may occur in the physical environment, with the
former occurring first. In fact, Scott (1999, pp. 111–112), in the context of her

Table 9.3 Results of correlation analysis between vulnerability and wealth

“IV” “IV_sp” “IV_f”

“IW” Pearson Correlation −0�111∗∗ −0�149∗∗ 0�016
Sig. (2-tailed) �000 �000 �531

“IW_sp” Pearson Correlation −0�112∗∗ −0�141∗∗ 0�008
Sig. (2-tailed) �000 �000 �769

“IW_f” Pearson Correlation 0�045 −0�068∗∗ 0�013
Sig. (2-tailed) �073 �007 �601
N 1561 1561 1561

∗∗ Correlation is significant at the 0.01 level (2-tailed)
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analysis of accessibility to jobs in Los Angeles, showed that the census tracts at the
periphery of Los Angeles County (where higher values of IV exist) were classified
as low-income tracts in the 1980 census. However, those tracts themselves became
high-income in 1990. This implies a rapid social change that occurred throughout
the county in the 1980s that might not yet have been reflected by a physical change
in 1990. Thus, one can put forward a proposition that a wealth index based on the
1980 census data might have done a better job than the index used here, which
was based on the 1990 census data. It can be suggested, then, that the statistically
significant correlation results noted above in fact represent strong evidence of a
possible causal linkage between the physical and social conditions of urban places
with regard to vulnerability (again conforming to universal wisdom about vulner-
ability patterns). This is further investigated through the results of the regression
models reported in the following subsection.

9.6.7.3 Results of regression models

As a first step in examining whether remotely sensed measures can be used in
conjunction with social variables to explain the variation in vulnerability, a step-wise
OLS regression model was developed. The model employed the IW as a depen-
dent variable, and a total of 40 independent variables (four Normalized MESMA
variables, eight variables resulting from applying landscape metrics at the census
tract level, and 28 variables resulting from applying the metrics at the four land
cover class levels). The technique of spatial filtering was used to split spatially
autocorrelated independent variables into their spatial and non-spatial components.

Table 9.4 Spatially filtered OLS regression for the index of wealth (IW)

Variable Unstandardized
Coefficient

Standardized � t Significance of t

Dependent Variable IW

Impervious_f −2177�326 −0�0361 −14�763 0�000
IJI_Shade_sp 526�144 0�157 5�777 0�000
Vegetation_f 1748�643 0�184 8�959 0�000
Impervious_sp −877�699 −0�073 −2�980 0�003
IJI-Shadei_f 206�075 0�075 2�854 0�004
PD_Impervious_f 1532�003 0�394 11�253 0�000
PD_Impervious_sp 1506�867 0�340 10�008 0�000
Vegetation_sp 1475�475 0�055 2�228 0�000

R 0�767
Adjusted R2 0�586
z�1� For residuals 0�89
N 1561

Note: see text for an explanation of the variables
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The results of the model are shown in Table 9.4, in which only statistically signif-
icant predictors (at the 0.05 level) are reported. The R value for this model was
0.767, with an adjusted R2 of 0.586. An examination of the residuals showed that
they were not spatially autocorrelated and exhibited no heteroscedasticity. Also, the
results of the co-linearity diagnostic indicated that the independent variables had
scored low (< 9) in the condition index. The results show that four of 40 variables
utilized emerged as statistically significant predictors of the index of wealth. Among
these, two were Normalized MESMA measures (vegetation and impervious surface)
and two were derived from landscape metrics applied at the land cover class level
within census tracts (PD_Imp and IJI-shd). Considering the absolute values of
the statistically significant standardized beta coefficients, we can determine that
MESMA measures have accounted for about 26% of the explained variation in the
wealth, most of which was related to variation in vegetation. The measures derived
from landscape metrics accounted for about 74%. Further, the spatial component
in all variables accounted for about 52% of the explained variation in the wealth,
while the filtered component accounted for the remaining 48%.

The results in Table 9.4 indicate that the most important predictors of the wealth
index were the spatial and non-spatial components of PD_impervious, a landscape
metric measure that describes the density of patches within the impervious land
cover class in a census tract. The results show that although the density of imper-
vious surface in census tracts is indicative of higher wealth, the abundance of
impervious surface fractions derived from MESMA is negatively associated with
wealth. This interesting finding highlights the value of applying landscape metrics
to MESMA measures to reveal certain physical patterns within an urban place
that may not otherwise be shown if one is only relying on the measurement of
the physical composition in that place. Table 9.4 also lists vegetation as a strong
predictor of wealth, with higher vegetation abundance associated with the more
affluent census tracts – a finding that has been reported repeatedly in other urban
settings (e.g. Ryznar, 1998; Rashed et al., 2001; Small, 2001).

Finally, results in Table 9.4 indicate that the IJI_shade, another landscape metric
applied at the land cover class level, has emerged as a significant predictor of higher
wealth. IJI measures the degree of the intermixing of patches within a land cover
class. A lower IJI value indicates that patches belonging to a land cover class within
a census tract are more aggregated and less fragmented. The results in Table 9.4
suggest that wealth increases (and social vulnerability decreases) with the increase
of fragmentation in the shade within a census tract. Since shade has been used in the
analysis as a proxy for building heights, one can conclude that tracts with low-rise
buildings, e.g. single-family housing, would be characterized with higher IJI values.
On the other hand, tracts with high-rise building will possess lower IJI values, and
in Los Angeles these areas are likely to score lower on the wealth index, as in the
case of downtown Los Angeles. The second regression model utilized was a binary
logistic model that used the index of vulnerability (IV) as a dependent variable,
and wealth and the remotely sensed measures emerged as statistically significant
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Table 9.5 Logistic regression for the index of vulnerability (IV)

Variable � Wald Significance EXP(�)

Dependent Variable IV

Impervious 0�1390 0�9342 0�3338 1�1491
Vegetation 0�6273 21�1980 0�000 1�8725
IJI_Shade 0�3634 5�8804 0�0164 1�4838
PD_Impervious 0�6987 19�6991 0�000 2�0112
Wealth 1 −0�0723 0�3239 0�5692 0�9303
Wealth 2 0�6018 28�5415 0�0000 1�8253
Wealth 3 0�3628 11�5632 0�0007 1�4451
Wealth 4 −0�2658 5�6609 0�0180 0�7666

Overall percent correct 63�36%
Chi Square 15�3524 0�0317
Nagelkerke R2 0�102
N 1561

Note: see text for an explanation of the variables

predictors of the wealth index in the OLS regression model. The results of the
model are shown in Table 9.5. The threshold used to determine the binary values of
the IV was based on the mean value of the index. Those values that were above the
mean were assigned to 1, indicating higher vulnerability, and those values that were
equal to or less than the mean were assigned to 0, indicating lower vulnerability.
The model was also tested using other thresholds and the results were generally
consistent with those listed in Table 9.5. The overall correct prediction of the model
was about 63%, with �2 = 15�34 at a 0.05 level of significance.

The results in Table 9.5 show that three out of the four remotely sensed vari-
ables utilized emerged as statistically significant predictors of higher vulnera-
bility. The strongest among these was again the landscape metric-based measure,
PD_impervious, the higher values of which were shown to increase the odds of
being highly vulnerable by a factor of 2.01, holding all other variables constant.
On the other hand, as expected, being in the higher wealth category (wealth 4)
reduces the odds (by a factor of 0.77) of being in the highly vulnerable category.
This suggests that the wealth (social) effect is independent of the remotely sensed
(physical) effect, and that both need to be taken into account if we are to understand
the vulnerability of place.

9.6.8 To what extent do model results conform to universal
knowledge of vulnerability?

The purpose of this case study has been to provide an applied example of the
utility of an integrative GIS–remote sensing model for place-based vulnerability
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analysis. Generated knowledge of vulnerability was used to fulfil two objectives:
first, to explore the basic hypothesis that social vulnerability is manifested through
aspects from the physical environment in urban places within Los Angeles; and
second, to examine the proposition that remote sensing can provide us a quantitative
means to describe and assess aspects related to urban spatial structure that influence
vulnerability in that region.

To address the first objective, we examined the correlation between the wealth
index and vulnerability. The results showed a statistically significant negative corre-
lation between the two indexes, although not high enough to conclude that the
wealth can be taken as a sole indicator of vulnerability. Given the apparent differ-
ence between the spatial distributions of values in the two indexes, an obvious
question arises: how do these results conform to theories of vulnerability found in
the literature? The answer to this question can be discussed in light of the relation-
ship between access to resources and vulnerability. This relationship was previously
examined by researchers in the context of disasters in developing countries (e.g.
Wisner, 1993; Blaikie et al., 1994). In these studies, access to resources was tradi-
tionally measured by the level of poverty determined by income (as opposed to
the concept of wealth utilized here). In developing countries, spatial and physical
aspects of vulnerability tend to be much more pronounced because the poor are
often forced to live and work persistently in hazardous areas (Hewitt, 1997). In
contrast, socially and economically marginalized populations in the USA do not
necessarily live in areas at greatest risk of natural hazards (Bolin and Stanford,
1999). Indeed, the wealthy people may even choose to live in physically hazardous
settings, such as earthquake-prone hillsides in California (Davis, 1998). Therefore,
vulnerability in this case has little to do with systematic differences between the
rich and poor in terms of their exposure to the earthquake, a finding confirmed
above in the model results.

Additionally, the general literature on vulnerability draws a distinction between
two patterns of vulnerability: persistent (or chronic) vulnerability and situational
vulnerability (Bolin and Stanford, 1998). Persistent vulnerability connects to social
forces that produce economically, ethnically and culturally marginalized groups.
Situational vulnerability, on the other hand, occurs when some population groups
(including wealthy and financially secured ones) become increasingly at risk in
the face of calamity. This might happen due to a combination of circumstances
related to their jobs, choice of housing, etc., but does not necessarily need to be
related to social or demographic factors. That is, in situational vulnerability, a
household has the option to choose not to live in a hazardous place. In persistent
vulnerability, the social factor is much more noticeable, while the physical aspect
of vulnerability is implicit. Situational vulnerability is quite the opposite case,
in which the physical aspect of vulnerability becomes more apparent and the
social aspect becomes implicit. It is our contention that these patterns of persis-
tent and situational vulnerabilities were represented respectively by the index of
wealth (IW) and the index of vulnerability (IV) produced by the simulation of
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physical damage resulting from earthquake scenarios. The mismatch of the spatial
distribution between the two indexes implies some missing information related
either to social vulnerability (in the case of the IW) or physical vulnerability (in
the case of IV).

The second objective fulfilled by the knowledge generated in this case study is
related to the utility of remote sensing for providing measures that can be used as
surrogates for social vulnerability. The results of the OLS model showed that the
remotely sensed variables accounted for about 57% of the explained variation in
the IW. The results of the logistical regression showed that the remotely sensed
variables emerged as significant predictors of the IV. The moral of these results
is that remote sensing data can be used to derive information about the physical
composition and spatial structure of the built environment in an urban place. This
information reflects aspects of the social environment that will be manifested in
the demography and culture of people. The built environment, represented by
the arrangement of land cover classes, then interacts with the socio-economic
environment (measured, at a minimum, by income, race and ethnicity) to produce
the urban environment. The urban environment then creates a difference in people’s
vulnerability by influencing the volume and intensity of social interaction, which
in turn has implications for the opportunities that exist for different social groups
to access resources.

There is no doubt that a small number of statistical models based on one unique
urban area in a developed country cannot be taken as a foundation upon which to
build a grand theory of vulnerability to disasters, or to explain how vulnerability
is reflected in the urban spatial structure. However, the results of these models are
still sufficient to draw attention to the utility of place-based vulnerability analysis
using GIS and remote sensing in obtaining information that addresses core issues
of the social sciences such as social vulnerability.

9.7 Conclusions

The disaster caused by Hurricane Katrina in the USA in 2005, and the subsequent
course of events that shaped the disaster in affected cities along the US Gulf
Coast, revealed a striking example of physical and social vulnerabilities in ‘western’
cities in their worst-case scenario. The disaster has strongly challenged, or at least
shown the need for revisiting, some popular views that are frequently portrayed
in the literature in either an implicit or explicit manner, for example, the idea
that ‘inhabitants of less developed countries [are] more likely to die from hazards
than those in more developed ones’ (Bankoff, 2004, p. 29), or the emphasis on
development as an exclusive means to reducing risks (UNDP, 2004). These kinds of
broad generalizations with regard to vulnerabilities and risks could be misleading,
because there is no place or group of people that can be thought of as entirely safe,
neither is there a magic single solution for reducing urban risks. Rather, vulnerability
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exists in each urban society across the globe but is manifested in different forms.
These could be underdevelopment in one society, lack of education and technology
in a second, poor urban governance in a third, failure to translate knowledge into
action in a fourth, or a combination of two or more of these and other forms.

As Hewitt (1997, p. 143) underscores, ‘vulnerability analysis is essentially about
the human ecology of risks’. Ecological factors that are embedded in the land-
scape of an urban place contribute in different ways to the overall vulnerability
pattern of that place. These ecological factors represent, in varying degrees, the
context-altering forces that drastically affect people’s resilience and ability to cope
with and recover from losses. They also provide a means to uncover and under-
stand differential vulnerability within and between urban places. Yet, because these
ecological factors are variable and do not hold a constant relationship among
themselves, no two urban places are likely to be found that are identical in their
vulnerabilities. As a result, it is difficult to develop a broadly applicable action plan
that can be followed to diagnose vulnerability and reduce disaster impacts in every
single place in the world. Therefore, as we have strongly argued throughout this
chapter, revealing context particularities and being decisive for context-sensitive
mitigation policies are essential goals of urban vulnerability analysis.

In this chapter, we have capitalized upon the idea of particularity and proposed
a conceptual framework for analysing vulnerability across nested scales of urban
socio-ecological systems. We have shown how GIS and remote sensing can be
integrated to translate this framework into a replicable model for place-based vulner-
ability analysis. We showed through a wall-to-wall exercise an initial attempt to
apply this model to analyse urban vulnerability to earthquake hazards in Los Angeles
County, California. Despite the limited scope of the analysis that was carried out,
the results of the model call attention to some key considerations that underline
the potential of our GIS–remote sensing model for place-based urban vulnerability
assessment. The first is that stratification of potential disaster impacts is strongly
influenced by a range of contextual conditions, both societal and organizational,
which may not be directly related to the geophysical mechanisms of the triggering
of hazardous events. The second is the central role of urban dynamics modelling as
a means to better understand differential vulnerabilities in cities. The third consid-
eration is that, although vulnerability is largely a reflection of conditions created
and modified by human actions, one cannot discard the fact that knowledge of the
geophysical properties of natural hazards is essential to understand how dangers
arise at the interface of society and natural conditions. Finally, reducing losses from
hazardous events is not a problem that can be solved in isolation through a traditional
urban planning model. Rather, it requires an understanding of the magnitude of
shock that a given urban system is prepared to absorb while remaining capable of
operating, and of the means to build management models that take into account the
long-term impacts of mitigation efforts on current and future generations. Future
developments and applications of our model will need to be expanded in order to
ensure that these considerations are equally balanced.
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Our model depends upon an integration of GIS and remote sensing. Thus far,
the main stream of GIS and remote sensing integration discussions is devoted to
addressing practical details. Technical issues, such as whether and how the coupling
of GIS and remote sensing should be loosely or tightly implemented, common
interface design, building of hybrid remote sensing-GIS databases, data sharing
and interoperability, etc., have been, and continue to be, central to most of the
discussions (Ehlers, 1990; Mesev, 1999; Chen et al. 2000; Longley and Mesev,
2001; Chen, 2002; Longley, 2002). Few researchers (e.g. Mesev, 1997; Rindfuss
and Stern, 1998; Rindfuss et al., 2004) moved beyond the narrow technical detail to
larger methodological issues involved in the integration of the technologies under
the umbrella of GIS, for example, problems of spatial autocorrelation, spatial–
temporal mismatch, classification compatibility, etc., but attempts made in this
regard remain technical in tone and very generic, easy to acknowledge but difficult
to resolve.

There is no doubt that technical issues are central to GIS and remote sensing inte-
gration. Naturally, we have encountered lots of technical details and methodological
challenges in the course of developing and applying the place-based vulnerability
analysis model, some of which we were able to resolve, while others remain an
avenue for future developments. We have also learned the importance of seeking
guidance from the subject matter (i.e. urban vulnerability in Los Angeles) to inform
the development and integration of the technologies and the selection of solution
options. That is, we have learned how the fields of vulnerability and hazards can
help inform the selection, development and integration of GIS and remote sensing
techniques as much as we learned about the tools GIS and remote sensing can
offer to vulnerability analysis. For example, the use of a simulation approach in
deriving different scenarios of damage resembles to a greater extent the way in
which disaster managers traditionally utilize past disaster experiences as instru-
ments to learn about the adverse consequences of hazardous events in cities, and
to infer the underlying factors that need to be addressed to promote the level of
safety in the community. We used this very basic idea to develop algorithms that
can screen a multitude of disaster scenarios back into a measure of vulnerability of
the place. Likewise, our use of MESMA and landscape metrics in quantifying the
physical dimension of urban morphology in Los Angeles was inspired both by the
characteristics of the physical settings of our study site and by discussions in the
vulnerability literature about how the characteristics of the urban spatial structure
(e.g. open spaces, land use/land cover, transportation layout) influence the func-
tion of the city in the immediate aftermath and during the recovery from disaster
impacts (Hewitt, 1997; Menoni et al., 2000). This use of subject matter in guiding
the development of the GIS–remote sensing integrative model exemplifies the way
in which universal wisdom of vulnerability can be used to guide the investigation
into the particularities of place discussed earlier in this chapter.

To this end, we suggest that the integration argument in the ongoing GIS–remote
sensing literature needs to be extended further beyond its current technical and
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methodological focus to include the subject matter or phenomenon under consider-
ation; how its underlying dynamics vary over space, and how established theories in
such fields as economic, political and social sciences can be used to inform remote
sensing–GIS integration. Earlier in the chapter, we argued that urban places can be
used as an analytical basis for urban vulnerability analysis. In the conclusions of
this chapter, we again argue for urban places, or space in general, but this time to
be used as a basis for a wider concept of GIS–remote sensing integration, not only
in terms of data but also in terms of the development of functions, algorithms and
models that acknowledge the unique challenges each place brings to GIS–remote
sensing analysis and can ultimately provide a basis for contextually aware decision
making.

Acknowledgements

The research presented in this paper was partially supported by a grant from
the National Science Foundation (BCS-0117863). The case study reported in this
chapter was presented at the 3rd International Conference of Urban Remote Sensing,
Regensburg, Germany, June 2003.

References

Alberti, M. and Waddell, P. (2000) An integrated urban development and ecological simu-
lation model. Integrated Assessment 3(1): 1215–1227.

Allen, J. P. and Turner E. (1997) The Ethnic Quilt: Population Diversity in Southern Cali-
fornia. The Centre for Geographical Studies, California State University: Northridge,
CA, USA.

Anderson, R. E., Carter, I. and Lowe G. R. (1999) Human Behavior in the Social Environ-
ment: A Social Systems Approach, 5th edn. Aldine De Gruyter: New York, NY, USA.

Andrews, H. F. (1985) The ecology of risk and the geography of intervention: from research
to practice for the health and well-being of urban children. Annals of the Association of
American Geographers 74, 370–382.

Bankoff, G. (2004). The historical geography of disaster: ‘vulnerability’ and ‘local knowl-
edge’ in Western discourse. In Bankoff G. et al. (eds), Mapping Vulnerability: Disasters,
Development and People. Earthscan: Sterling, VA, USA, 25–36.

Blaikie, P., Cannon, T. Davis, I. and Wisner, B. (1994) At Risk: Natural Hazards, People’s
Vulnerability, and Disasters. Routledge: New York, NY, USA.

Bolin, R. and L. Stanford (1998) The Northridge Earthquake: Vulnerability and Disaster.
Routledge: New York, NY, USA.

Bolin, R. and L. Stanford. (1999). Constructing Vulnerability in the First World: The
Northridge Earthquake in Southern California, 1994. In Oliver-Smith, A, and Hoffman,
S. M. (eds), The Angry Earth: Disaster in Anthropological Perspective. Routledge: New
York, NY, USA, 89–112.

Burton, I., Kates, R. W. and White, G. F. (1978) The Environment as Hazard. Oxford
University Press: New York, NY, USA.



228 CH09 PLACE-BASED URBAN VULNERABILITY ANALYSIS

Cardona, O. D. (2004). The need for rethinking the concepts of vulnerability and risk from
a holistic perspective: a necessary review and criticism for effective risk management.
In Bankoff, G. et al. (eds), Mapping Vulnerability: Disasters, Development and People.
Earthscan: Sterling, VA, USA, 37–51.

Chen, K. (2002) An approach to linking remotely sensed data and areal census data. Inter-
national Journal of Remote Sensing 23(1): 37–48.

Chen S, Zheng, S. and Xie, C. (2000) Remote sensing and GIS for urban growth in China.
Photogrammetric Engineering and Remote Sensing 66(10): 593–598.

Cliff A. D. and Ord, J. K. (1981) Spatial Processes: Models and Applications. Pion:
London, UK.

Cova, T. J. (1999). GIS in emergency management. In Longley, P. A.et al. (eds), Geograph-
ical Information Systems. Wiley: New York, NY, USA, 845–858.

Cutter, S. L. (1996) Vulnerability to environmental hazards. Progress in Human Geography
20(4): 529–539.

Cutter, S. L. (2001) A research agenda for vulnerability science and environmental hazards.
IHDP Update: Newsletter for the International Human Dimensions Programme on Global
Environmental Change 2(1): 8–9.

Cutter, S. L. (2003a) GI science, disasters, and emergency management. Transactions in GIS
7(4): 439–445.

Cutter, S. L. (2003b) The vulnerability of science and the science of vulnerability. Annals of
the Association of American Geographers 93(1): 1–12.

Cutter, S. L., Boruff, B. J. and Shirley, W. L. (2003) Social vulnerability to environmental
hazards. Social Science Quarterly 84(1): 242–261.

Cutter, S. L., Mitchell, J. T. and Scott, M. S. (2000) Revealing the vulnerability of places: a
case study of Georgetown County, South Carolina. Annals of the Association of American
Geographers 90(4): 713–737.

Davis, M. (1998) The Ecology of Fear. Metropolitan: New York, NY, USA.
Dow, K. (1992) Exploring differences in our common feature(s): the meaning of vulnerability

to global environmental change. Geoforum 23(3): 417–436.
Ehlers, M. (1990) Remote sensing and geographic information systems: towards integrated

spatial information processing. IEEE Transactions on Geoscience and Remote Sensing
28(4): 763–766.

FEMA–NIBS (Federal Emergency Management Agency and Institute of Building Sciences).
(1999) HAZUS: User’s Manual and Technical Manuals, Vols 1–3. FEMA–NIBS:
Washington, DC, USA.

Fitzpatrick, K. and LaGory, M. (2000) Unhealthy Places: The Ecology of Risk in the Urban
Landscape. Routledge, New York, NY, USA.

Forster, B. C. (1985) An examination of some problems and solutions in monitoring
urban areas from satellite platforms. International Journal of Remote Sensing 6(1):
139–151.

Geoghegan, J., Wainger, L. A. and Bockstael, N. E. (1997) Spatial landscape indices in a
hedonic framework: an ecological economics analysis using GIS. Ecological Economics
23(3): 251–264.

Getis, A. (1995). Spatial filtering in a regression framework: examples using data on urban
crime, regional inequality and government expenditure. In Anselin, L. and Florax, R. (eds),
New Directions in Spatial Econometrics. Springer-Verlag: Berlin, Germany.



REFERENCES 229

Getis, A. and Ord, J. K. (1992) The analysis of spatial association by use of distance statistics.
Geographical Analysis 24; 189–206.

Goodchild, M. F. and Janelle, D. G. (2004). Thinking spatially in the social sciences.
In Goodchild, M. F. and Janelle, D. G. (eds), Spatially Integrated Social Science. Oxford
University Press: New York, NY, USA, 3–22.

Gordon, P. and Richardson, H. W. (1999) Review essay: Los Angeles, City of Angels? No,
City of Angles. Urban Studies 3: 575–591.

Herold, M., Goldstein, N. and Clarke, K. (2003) The spatiotemporal form of urban growth:
measurement, analysis and modelling. Remote Sensing of Environment 86: 286–302.

Herold, M., Scepan, J. and Clarke, K. C. (2002) The use of remote sensing and landscape
metrics to describe structures and changes in urban land uses. Environment and Planning
A 34: 1443–1458.

Hewitt, K. (1997) Regions of Risk: a Geographical Introduction to Disasters. Longman:
Harlow, UK.

Hewitt, K. and Burton, I. (1971) The Hazardousness of a Place: a Regional Ecology of
Damaging Events. Published for the University of Toronto Department of Geography by
University of Toronto Press: Toronto, Canada.

ICSU. (2002) Science and Technology for Sustainable Development. ICSU Series on Science
for Sustainable Development, No. 9. International Council for Science: Paris, France.

Jiang, H. and Eastman, J. R. (2000) Application of fuzzy measures in multi-criteria evaluation
in GIS. International Journal of Geographic Information Science 14(2): 173–184.

Kates, R. W. (1971) Natural hazards in human ecological perspective: hypotheses and models.
Economic Geography 47(3): 438–451.

Li, W. (1998) Anatomy of a new ethnic settlement: the Chinese ethnoburb in Los Angeles.
Urban Studies 35(3): 479–501.

Liverman, D. M. (1990). Vulnerability to global environmental change. In Kasperson, R. E.
et al. (eds), Understanding Global Environmental Change: The Contributions of Risk
Analysis and Management. Clark University: Worcester, MA, USA, 27–44.

Longley, P. A. (2002) Geographical information systems: will developments in urban remote
sensing and GIS lead to ‘better’ urban geography? Progress in Human Geography 26(2):
231–239.

Longley, P. A. and Mesev, V. (2001) Measuring urban morphology using remotely-sensed
imagery. In Donnay, J.-P. et al. (eds), Remote Sensing and Urban Analysis. Taylor and
Francis: London, UK, 163–183.

Malczewski, J. (1999) GIS and Multicriteria Decision Analysis. Wiley: New York, NY,
USA.

McGarigal, K., Ene, E. and Holmes, C. (2002) FRAGSTATS: Spatial Pattern Analysis
Program for Quantifying Landscape Structure. University of Massachusetts, Amherst,
MA, USA: http://www.umass.edu/landeco/research/fragstats/fragstats.html

Menoni, S. et al. (2000) Measuring the seismic vulnerability of strategic public facilities:
response of the health care system. Disaster Prevention and Management 9(1): 29–38.

Mesev, V. (1997) Remote sensing of urban systems: hierarchical integration with GIS.
Computers, Environment and Urban Systems 21(3/4): 175–187.

Mesev, V. (1999) Editorial: integration issues in GIS and remote sensing. Computers, Envi-
ronment and Urban Systems 23(1): 1–3.

Mileti, D. S. (1999) Disasters by Design: a Reassessment of Natural Hazards in the United
States. Joseph Henry Press: Washington, DC, USA.



230 CH09 PLACE-BASED URBAN VULNERABILITY ANALYSIS

Mitchell, J. K. (1989). Hazards research. In Gaile, G. L. and Willmott, C. J. (eds), Geography
in America. Merrill: Columbus, OH, USA, 410–424.

Mitchell, J. K., Devine, N. and Jagger, K. (1989) A contextual model of natural hazards.
Geographical Review 79(4): 391–409.

Modarres, A. (1998) Putting Los Angeles in its place. Cities 15(3): 135–147.
Mustafa, D. (2005) The production of an urban hazardscape in Pakistan: modernity, vulnera-

bility, and the range of choice. Annals of the Association of American Geographers 95(3):
566–586.

Parker, D. C., Evans, T. P. and Meretsky, V. (2001) Measuring Emergent Proper-
ties of Agent-Based Land-cover/Land-use Models Using Spatial Metrics, Vol. 2002.
Seventh Annual Conference of the International Society for Computational Economics:
http://php.indiana.edu/∼dawparke/parker.pdf. Seventh Annual Conference of the Interna-
tional Society for Computational Economics: http://php.indiana.edu/∼dawparke/parker.pdf

Radke, J. et al. (2000) Application challenges for GIScience: implications for research,
education, and policy for risk assessment, emergency preparedness and response. Journal
of the Urban and Regional Information Systems Association 12(2): 15–30.

Rashed, T. (2006) Geospatial technologies, vulnerability assessment, and sustainable hazards
mitigation in cities. In Campagna, M. (ed.), GIS for Sustainable Development: Bringing
Geographic Information Science into Practice towards Sustainability. Taylor and Francis
(CRC Press): New York, NY, USA, 287, 309.

Rashed, T., and J. Weeks (2003) Assessing Vulnerability to Earthquake Hazards through
Spatial Multicriteria Analysis of Urban Areas, International Journal of Geographical
Information Science. 17(6): 547–576.

Rashed, T., J. Weeks, M. Gadalla, and A. Hill (2001) Revealing the Anatomy of Cities
through Spectral Mixture Analysis of Multispectral Satellite Imagery: A Case Study of
the Greater Cairo Region, Egypt, Geocarto International. 16(4): 5–16.

Rashed, T. et al. (2003) Measuring the physical composition of urban morphology using
multiple endmember spectral mixture models. Photogrammetric Engineering and Remote
Sensing 69(9): 1011–1020.

Rejeski, D. (1993). GIS and risk: a three-culture problem. In Goodchild, M. F.et al. (eds),
Environmental Modelling with GIS. Oxford University Press: Oxford, UK, 318–331.

Rindfuss, R. R. and Stern, C. (1998). Linking remote sensing and social science: the need
and the challenges. In Liverman, D. M. (ed.), People and Pixels: Linking Remote Sensing
and Social Science. National Academy Press: Washington, DC, USA, 1–27.

Rindfuss, R. R. et al. (2004) Developing a science of land change: challenges and method-
ological issues. Proceedings of the National Academy of Sciences of the USA 101(39):
13976–13981.

Roberts, D. A. et al. (1998) Mapping Chaparral in the Santa Monica mountains using multiple
endmember spectral mixture model. Remote Sensing of Environment 65: 267–279.

Rubin, B. (1977) A chronology of architecture in Los Angeles. Annals of the Association of
American Geographers 67(4): 521–537.

Ryznar, R. M. (1998). Urban Vegetation and Social Change: an Analysis using Remote Sensing
and Census Data. PhD Dissertation, University of Michigan, Ann Arbor, MI, USA.

Saaty, T. L. (1980) The Analytic Hierarchy Process. McGraw-Hill: New York, NY, USA.
Scheurer, T. (1994) Foundations of Computing: System Development with Set Theory and

Logic. Addison-Wesley: Cambridge, MA, USA.



REFERENCES 231

Scott, L. M. (1999). The Accessible City: Employment Opportunities in Time and Space.
Doctoral Dissertation, San Diego State University/University of California at Santa
Barbara, CA, USA.

Small, C. (2001) Estimation of urban vegetation abundance by spectral mixture analysis.
International Journal of Remote Sensing 22(7): 1305–1334.

SSC (Seismic Safety Commission of the State of California). (1995) Northridge Earthquake:
Turning Loss to Gain. SSC: Sacramento, CA, USA.

Tobin, G. A. and Montz, B. E. (2004) Natural hazards and technology: vulnerability, risk, and
community response in hazardous environments. In Brunn, S. D. et al. (eds), Geography
and Technology. Kluwer Academic: Dordrecht, The Netherlands, 547–570.

Turner, B. L. II et al. (2003) Science and technology for sustainable development: a frame-
work for vulnerability analysis in sustainability science. Proceedings of the National
Academy of Sciences of the USA 100(14): 8074–8079.

UNDP (2004) Reducing Disaster Risk: A Challenge for Development. United Nations
Development Programme, Bureau for Crisis Prevention and Recovery: New York,
NY, USA.

Weber, C. (1994) Per-zone classification of urban land cover for urban population estimation.
In Foody, G. M. and Curran, P. J. (eds), Environmental Remote Sensing from Regional to
Global Scales. Wiley: Chichester, UK, 142–148.

Weeks, J. R. et al. (2000) Spatial variability in fertility in Menoufia, Egypt, assessed through
the application of remote-sensing and GIS technologies. Environment and Planning A
32(4): 695–714.

White, G. F. and Haas, J. E. (1975) Assessment of Research on Natural Hazards. MIT Press:
Cambridge, MA, USA.

Wisner, B. (1993) Disaster vulnerability: scale, power, and daily life. GeoJournal 30(2):
127–140.

Wisner, B., Blaikie, P., Cannon, T. and Davis, I. (2004) At Risk: Natural Hazards, People’s
Vulnerability, and Disasters, 2nd edn. Routledge: London, UK.





10
Using GIS and remote sensing
for ecological mapping and
monitoring

Jennifer A. Miller∗ and John Rogan†
∗Department of Geography and the Environment, University of Texas at Austin, TX, USA

† Graduate School of Geography, Clark University, Worcester, MA, USA

10.1 Introduction

The ability to map and monitor ecological phenomena over large spatial extents
has become a focus of renewed research in the context of increasing awareness of
human activities and environmental change (Busby, 2002; McDermid et al., 2005;
Liu and Taylor, 2002). Human activities substantially impact most of the terrestrial
biosphere, currently at rates and spatial extents far greater than in any other period
in human history (Kerr and Ostrovsky, 2003). Numerous organizations, disciplines
and initiatives have formed in the last 15 years in response to the myriad challenges
to sustainable resource management and ecological protection, e.g. the Interna-
tional Association of Landscape Ecology, the NASA Land Cover/Land Use Change
Program. These interdisciplinary and integrative initiatives agree that scientifically
sound and sustainable resource management requires ecological data of variable
spatial and temporal characteristics to provide the scientific understanding required
to measure, model, maintain and/or restore landscapes at multiple scales (EPA,
1998; Wiens et al., 2002). Research efforts in support of sustainable ecosystem
management have focused on characterizing ecosystem condition and change,
exploring the effects of different management schemes, and understanding how
natural and anthropogenic processes affect ecosystem functioning (EPA, 1998).
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Solutions to these problems require spatially explicit, timely, ecological data, often
combined with statistical models in a geographic information system (GIS).

Current research illustrates how ecological problems ranging from biodiver-
sity loss to land-use change have benefited greatly from advances in geospatial
technologies such as GIS and remote sensing, both in the provision of data and
access to spatial data analysis tools. The integration of GIS and remote sensing for
ecological mapping and monitoring, while addressed in earlier research (Stoms and
Estes, 1993; Franklin, 1995; Goodchild, 1994), has become even more important
as these data and technologies continue to evolve, and as ecological issues become
more critical. The key motivations for integrating GIS and remote sensing for
ecological research and management are:

1. The acceptance of the landscape context and scale for sustainable ecosystem
management (Liu and Taylor, 2002).

2. The importance of retrospective and prospective monitoring for conservation
(Urban, 2002; Turner et al., 2003).

3. Increased familiarity with GIS and remote sensing data and methods within
resource management agencies (Jennings, 2000).

4. Improved geospatial data quality and availability (at reduced cost) (Rogan and
Chen, 2004).

5. Reported advantages of using different types of geospatial data (from both
GIS and remote sensing) for mapping and monitoring applications (Rogan
and Miller, 2006; Zimmermann et al., 2007).

Although the benefits of integrating GIS and remote sensing data for more
effective ecological mapping and monitoring are many, the time, money and
expertise required to take full advantage of the technology can be initially daunting.
The information used for scientifically valid ecological mapping and monitoring
needs to be frequently updated, sufficiently detailed and spatially continuous.
Ecological inventories have historically been conducted through field survey – a
time-consuming and expensive endeavour, particularly when study sites are large
and/or remote, and when long-term monitoring is a concern to resource managers
(Rogan and Chen, 2004). This field work paradigm has implicitly affected both
the typical study area size and the spatial scale of observations associated with
ecological research. Field data are also typically collected based on some purposive
sampling scheme, in which information on a specific ecological attribute (e.g.
species abundance, timber inventory) is of primary interest, and therefore may not be
appropriate for describing other attributes of subsequent interest (e.g. productivity,
fuel loadings, habitat suitability). Lack of familiarity and background knowledge,
equipment cost and complexity of data-processing methods are often cited as factors
that prevent even wider use of remote sensing approaches by ecologists as well as by
practitioners in other disciplines (McDermid et al., 2005; Treitz and Rogan, 2004).
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The availability of ecological datasets, collected through remote sensing
(e.g. land-cover, NDVI) or derived within a GIS (e.g. topographic moisture index,
incoming solar radiation) at local to global scales, has revolutionized the way ecolog-
ical research is conducted (Cohen and Justice, 1999; Rushton et al., 2004). GIS
enhances the ability to derive information from remotely sensed data, and remotely
sensed data can describe actual environmental conditions for expedient updating of
GIS databases. The synoptic perspective, temporal frequency and repeatability of
remotely sensed measurements have been invaluable for detecting and monitoring
change (Rogan et al., 2003).

In a recent review of remote sensing applications in ecological research, Kerr and
Ostrovsky (2003) identified three main application focus areas: land-cover classi-
fication, integrated ecosystem measurements and multitemporal change detection.
This chapter examines the ways in which remotely sensed data have been integrated
with GIS data and modelling approaches in the context of these three areas. We
focus on species distribution models (SDM)1 and biodiversity mapping/modelling
as particular cases of ecological mapping, we summarize the GIS and remotely
sensed environmental data that are most commonly used in these applications, and
we include a case study that integrates GIS and remote sensing for ecological
monitoring (land-cover change mapping). Although the traditional inconsistency in
spatial scale between remotely sensed data (indirect) and ecological field observa-
tions (direct) has been a major obstacle to more extensive integration of remote
sensing in ecological research, access to increasingly fine spatial resolution data has
resulted in great progress in this area (Turner et al., 2003; Aplin, 2005; Kerr and
Ostrovsky, 2003). Further, advances in remote sensing theory, data and technology
over the past 35 years have led to general and robust methods of large area data
collection that, for many ecological attributes, can provide more reliable estimates
than field methods (Davis and Roberts, 2000). The integration of GIS and remotely
sensed data and techniques can greatly facilitate all steps of data collection, compi-
lation, analysis and visualization. The potentially synergistic benefits of integrating
GIS and remotely sensed data with statistical methods are still being explored and
identified.

The three main sources of information used in ecological mapping and monitoring
applications are shown in Table 10.1. Field observation provides the most detailed
and fine-scale information, although the spatial coverage is not continuous. Field
data are also expensive and time-consuming to collect, and many of the observations
are relatively subjective or suited for a narrow purpose. GIS data can provide contin-
uous spatial coverage (usually through interpolation methods), albeit at coarser

1 We follow the convention of Guisan and Thuiller (2005) in using ‘species’ to refer to both plants
and animals, as animal species habitat suitability is directly related to plant species habitat suitability.
Although we use the term ‘species’ here, these models can also be used to predict species assemblages
(Ferrier et al., 2002; Franklin, 1995).
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Table 10.1 Characteristics of field, GIS and RS data sources used for ecological mapping
and monitoring

Data
collection

Benefits Limitations

Field
observation

Fine spatial scale
Detailed information
Direct observation

Limited temporal extent
Incomplete spatial coverage
Expensive
Subjective

GIS Associated with potential
distributions
Can be used for species-level
mapping
Can be used to derive direct
and resource gradients

Limited spatial resolution
Unknown accuracy
Cannot be frequently updated
Grid cell values usually result
from interpolation
Indirect gradients most readily
available

RS Associated with actual
distributions
Allows data collection in
remote areas
Synoptic perspective
Systematic measurement for
every pixel; Complete spatial
coverage
Enable larger study areas
Multitemporal; high temporal
resolution
Cost-effective for large extents

Atmospheric obstructions
possible
Expensive for fine spatial scales
Less detailed information
Processing methods
intimidating (to untrained users)
Usually represent indirect or
functional gradients

GIS and RS
(integrated)

Data can be upscaled
More consistent and objective
databases
Can provide updated
environmental data
Data are readily available
Direct, resource, indirect, and
functional gradients can be
combined

Compounding of
quantitative–positional errors
Lack of automated methods to
aid integration
Paucity of raster GIS data with
fine spatial resolution (to match
RS data)

spatial resolution and lower or unknown positional accuracy. GIS data, particularly
digital elevation models (DEMs), have been used to derive complex environmental
variables that are more ecologically relevant (e.g. topographic moisture index,
potential solar radiation). Remote sensing facilitates data collection in difficult- or
impossible-to-reach areas and provides an important synoptic and multitemporal
perspective. Remote sensing also systematically provides a value for each pixel and
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spatially continuous coverage. However, fine spatial resolution imagery consistent
with the scale of field observation is expensive, some amount of processing is
required, and atmospheric obstructions can be problematic. The integration of GIS
and remotely sensed data improves upon many of their individual limitations.

10.2 Integration of GIS and remote sensing in
ecological research

Rogan and Miller (2006) summarized four ways in which GIS and remote sensing
data can be integrated: (a) GIS can be used to manage multiple data types; (b)
GIS analysis and processing methods can be used for manipulation and analysis
of remotely sensed data (e.g. neighbourhood or reclassification operations); (c)
remotely sensed data can be manipulated to derive GIS data; and (d) GIS data can
be used to guide image analysis to extract more complete and accurate information
from spectral data.

Remotely sensed data and techniques have been widely available since the early
1970s but the most common ecological application for which they are combined
with GIS is still mapping land cover (Stoms and Estes, 1993). The coarsened scale
of these land-cover maps, as well as the potential for circular reasoning when using
them to model plant species distributions, renders them unsuitable for most SDM
studies (Zimmermann et al., 2007). The continuous properties of image spectral
values and vegetation indices have rarely been used as predictor variables in SDM,
although both show great potential (Frescino et al., 2001; Osborne et al., 2001;
Suárez-Seoane et al., 2002; Zimmermann et al., 2007). GIS has been a mainstay of
SDM through the derivation of and analysis with bioclimatic factors associated with
species distributions (see Franklin, 1995; Guisan and Zimmermann, 2000) but other
factors, such as competition and disturbance, may be more appropriately described
by remotely sensed data. Despite the synergistic potential of combining GIS and
spectral data, remote sensing is rarely used directly in ecological mapping studies
(but see section 10.5).

10.3 GIS data used in ecological applications

We use ‘GIS data’ here to describe non-spectral digital environmental data, as they
are stored, manipulated and typically derived in a GIS. These data are derived
either by interpolating field or station observations to a continuous surface (e.g.
temperature) or by calculating new surfaces from existing spatially continuous data
(e.g. slope from a DEM). The availability of digital data that represent increasingly
complex environmental characteristics provides the basis for SDM (for reviews,
see Franklin, 1995; Guisan and Zimmermann, 2000; Guisan and Thuiller, 2005).
Climatic and topographical variables are the most widely used predictors in SDM,
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as they describe broad-scale physiological tolerances related to water and temper-
ature, and site energy and moisture availability associated with micro-climates,
respectively (Franklin, 1995). These environmental variables are reviewed below,
along with a summary of gradient analysis, which provides the conceptual frame-
work for describing the way in which environmental gradients influence species
distributions.

10.3.1 Gradient analysis

SDM evolved from research methods that used gradient analysis to explore how
plant species composition and distribution change along environmental gradients
(Whittaker, 1973; Kessell, 1979; Franklin, 1995). The range of environmental condi-
tions a species is physiologically able to tolerate defines its fundamental niche,
which is analogous to its potential distribution. Due to other factors, such as compe-
tition or disturbance, a species typically only occupies a subset of its fundamental
niche, which is termed its ‘realized niche’, or actual distribution. SDM involves
the quantification of the species–environmental gradient relationship, the result of
which is a species habitat2 distribution map. The nature of the gradient variable
determines how robust the resulting model is likely to be. Austin (1980) describes
three types of environmental gradients:

1. Direct gradients are those in which the environmental variable has a direct
physiological effect on species growth but is not consumed (e.g. temperature).

2. Resource gradients have a direct physiological effect on growth, and are
actually used or consumed (e.g. water, nutrients).

3. Indirect gradients have no direct physiological effect and are likely the result of
a location-specific correlation with one or more direct gradients (e.g. correlation
between temperature and elevation makes elevation an indirect gradient).

Data describing indirect gradients are usually more readily available in digital
format, or easily measured in the field, and are often highly correlated with observed
species patterns (Guisan and Zimmermann, 2000). However, these relationships are
location- and gradient-specific, usually describing a combination of other direct or
resource gradients, and models in which they are used are generally not appropriate
for extrapolation beyond the area in which the data were collected (Franklin, 1995;
Austin and Gaywood, 1994).Variables that represent direct or resource gradients are
the most suitable for extrapolating across space and time, although Franklin (1995)

2 Recent articles have discussed the ambiguity in the use of the word ‘habitat’ (de Leeuw et al., 2002;
McDermid et al., 2005). Here we consider habitat to refer to the type of environment (as measured
by a suite of environmental factors) in which an organism normally occurs.
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points out the incongruity of using empirical data on actual species distribution
(realized niche) to map potential species distribution (fundamental niche).

A fourth type of gradient added by Müller (1998), ‘functional’ gradients, is
associated with species response to direct and resource gradients. Many of the
spectral-derived variables used in ecological applications of remote sensing, such as
productivity, biomass, and leaf area index, can be described as functional gradients.
Models that include functional gradients allow for accurate depiction of actual
landscape composition, structure and function (Rollins et al., 2004) and may be
particularly useful for modelling disturbed landscapes (Lees and Ritman, 1991;
Frescino et al., 2001). Functional gradients should be considered location-specific
in the same sense as indirect gradients, although Zimmermann et al. (2007) discuss
an exception involving the use of spectral-derived variables that describe vegetation
structure as direct gradients for modelling bird species distribution.

The distinction between mapping actual vs. potential vegetation species has been
discussed previously (Woodcock et al., 2002; Franklin, 1995). Maps of potential
species distribution are used in models to investigate effects of climate change on
vegetation distribution, and as the first step in parameterizing dynamic vegetation
models (Guisan and Zimmermann, 2000). However, actual species distribution maps
may be more appropriate for certain applications, such as resource management or
biodiversity measurement. Figure 10.1 illustrates the typical flow of information
and data types used when GIS and remotely sensed data are integrated for ecological
mapping and monitoring. A SDM based solely on GIS data, such as bioclimatic
variables, makes the often untenable assumption that species distributions are at
equilibrium with their environment (Guisan and Zimmermann, 2000). The resulting
potential habitat distribution maps, particularly for species whose distributions have
been modified by anthropogenic effects, are likely to be over-predicted, as they
describe the fundamental rather than the realized niche (Thuiller et al., 2004).
Coarse-scale predictor variables, such as climate, are typically correlated with poten-
tial distributions, while finer-scale topographic variables are associated with actual
distributions (Thuiller et al., 2003; Franklin, 1995). Guisan and Thuiller (2005)
further divide the hierarchical effects into (from global to local scale) limiting
climatic factors, dispersal factors, disturbance factors and resource factors. Addi-
tional information on biotic and abiotic factors that reduce a species’ fundamental
niche must be included in the SDM to produce a map of actual species distribu-
tion. Functional gradients that describe actual ecosystem characteristics, such as
normalized difference vegetation index (NDVI), can be used as predictor variables
to produce actual species distribution.

While many direct and resource gradients important to species distributions
are still unknown, immeasurable or difficult to describe across a landscape
(Whittaker, 1973), the ability to derive increasingly complex (and more ecolog-
ically relevant) environmental variables using GIS and remote sensing has great
potential. Accurate and timely spatial information describing actual ecological char-
acteristics is essential for predicting future conditions, and remotely sensed data
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Figure 10.1 Typical information flow for integrating GIS and RS in ecological mapping
and monitoring applications

are particularly useful for this purpose. The next generation of gradient models
will incorporate direct, resource and functional gradients to more accurately map
ecological characteristics (Franklin, 1995; Austin and Heyligers, 1989).

10.3.2 Climate

Climate has been linked with vegetation distribution from at least the early 1800s,
when von Humboldt wrote about the relationship between latitude and vegetation
type (as cited in Jongman et al., 1995). Early global plant distribution maps based on
climatic factors alone were surprisingly accurate (e.g. Holdridge, 1947, 1967) and
the relationship between climate and vegetation remains very important in broad-
scale vegetation modelling. In addition to providing the fundamental relationship on
which static vegetation maps are based, an understanding of the complex feedback
relationship between vegetation and climate variability is necessary to parameterize
dynamic vegetation models used to study global biogeochemical cycles.

Climate data are particularly important in SDMs used for predicting consequences
of global warming on plant and animal distributions. Many plants and animals are
limited in their distribution by temperature extremes. Teixeira and Arntzen (2002)
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observed that slight changes in climate will have a particularly important effect
on ectothermal (cold-blooded) animals, as temperature directly affects most of
their physiological processes, as well as other important environmental conditions
(air humidity, soil moisture, and vegetation composition). Thuiller et al. (2003)
found that temperature and precipitation extremes were effective surrogates for
bioclimatic factors with more direct physiological roles (e.g. evapotranspiration)
in limiting the distribution of Mediterranean vegetation in Spain. While climate
variables, such as temperature and precipitation, tend to have broad-scale influence
on species distributions, many finer-scale bioclimatic indices, such as potential solar
radiation, mean relative humidity and potential evapotranspiration, can be derived
using other GIS data (e.g. elevation, aspect) and may be more directly related to
species distributions (Franklin, 1998; Cairns, 2001; Leathwick, 1998; Meentemeyer
et al., 2001).

Thuiller et al. (2004) found that climate was the most important driver of species
distributions (plants, mammals, birds, reptiles and amphibians) in Europe. They
observed that, at the relatively coarse scale of their study (50 km), land-cover
provided largely redundant information relative to climate. However, using finer-
scale land-cover data (1 km) to predict plant species presence in Britain, Pearson
et al. (2004) found that availability of suitable land-cover was more important than
availability of suitable climate. Cumming (2002) suggested that the seasonality
of precipitation may be as important as its magnitude, particularly for animal
distributions. Climate can influence animal distribution both directly (e.g. bird
migration in winter) and indirectly (e.g. land cover and food availability) (Venier
et al., 2004). Although their importance in determining species distributions is well
established, digital climate surfaces have generally been produced by interpolating
ground station data and are of limited availability and quality for many areas (Parra
et al., 2004). In a recent study, Suárez-Seoane et al. (2004) explored the use of
climate variables derived from METEOSAT in a model of bird distribution in Spain.
They found that these 5 km resolution data showed great potential as an alternative
to interpolated climate surfaces, particularly in areas where meteorological stations
were sparse.

10.3.3 Topography

While bioclimatic factors, such as water availability, temperature and insolation,
are the main drivers of species distributions, topographic variation modifies their
influences, resulting in increased spatial heterogeneity associated with microclimatic
effects. Although simple topographic variables that represent indirect gradients,
such as elevation, slope and aspect, should have less influence when used along
with direct and resource gradients in models, they are often empirically important,
as they tend to be derived with higher accuracy (Rollins et al., 2004; Guisan and
Zimmermann, 2000). One general assumption has been that as the processing steps
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involved in deriving a topographic variable increase, so too does its susceptibility
to error (Guisan and Zimmermann, 2000), although Van Niel et al. (2004) note
that this is not always the case. In a study that simulated error propagation in the
derivation of topographic variables, they found that in some cases more complex
variables, such as net solar radiation, were less affected by error than comparatively
simple variables, such as slope and aspect (Van Niel et al., 2004). In a similar study,
Holmes et al. (2000) found that topographic variables derived by compounding
values from a large number of other grid cells were more error-prone, and that
while global error estimates may be low, local error could be quite high.

Derived topographical variables used in SDM include potential solar radiation,
landscape position, slope curvature and topographic moisture index (for reviews,
see Florinsky, 1998; Franklin, 1995; Moore et al., 1991). Potential solar radiation
can be used to simulate a direct gradient that describes potential evapotranspi-
ration and soil moisture. Landscape position, the location of a grid cell relative
to surrounding grid cells (upslope or downslope) is related to a combination of
soil properties, specifically depth, texture and potential moisture (Franklin, 1995).
Slope curvature and topographic moisture are both related to the water availability
of a site (Moore et al., 1991). In a study relating mammalian species richness to
environmental variables, Tognelli and Kelt (2004) used elevation range for each
quadrat as a proxy variable to represent habitat heterogeneity. White et al. (2005)
found that topographic variation influenced the way in which vegetation responded
to interannual climatic fluctuations (e.g. ENSO), although it is often not explicitly
addressed in climate models. Topography also influences the onset, rate, pattern
and duration of disturbance intensity and severity (Rogan and Miller, 2006).

Other GIS variables, such as geology and soil type, can also be used to represent
moisture and nutrient availability, although usually at a coarser scale due to their
measurement level. GIS variables, such as ‘distance to _____ (roads, water, edge,
etc.)’, can represent proximity to disturbance or important resources (Osborne et al.,
2001). Landscape metrics, such as pattern, structure and heterogeneity, can also
be quantified and used as predictor variables (McGarigal and McComb, 1995;
Gottschalk et al., 2005). Habitat suitability maps for other species can also be used
to represent potential competition or predation, or can be used to stratify sampling
schemes for more rare species (Edwards et al., 2005) .

10.4 Remotely sensed data for ecological applications

Over the past 35 years, remotely sensed data have steadily become an invaluable
information source for ecological characterization and survey (see recent reviews
by Gong and Xu, 2003; Coppin et al., 2004; Aplin, 2005; Turner et al., 2003;
Kerr and Ostrovsky, 2003; Rogan and Chen, 2004). This is primarily due to the
effectiveness of air-borne and space-borne remote sensing platforms and sensors
that facilitate observation of biophysical attributes over extensive areas at multiple
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spatial, spectral and temporal scales (Stow, 1995; Jensen, 2000). Landsat (30m),
long considered the ‘workhorse’ of terrestrial remote sensing, has provided the
longest-running time series of remotely sensed data at scales appropriate for regional
studies. Thus, there is a perceived space–time mismatch between the information
that ecologists want and what remotely sensed data can provide. Nonetheless, field
data (ground reference) are often limited for regional-global scale investigations
because they are rarely as widespread or timely as remotely sensed data (Pettorelli
et al., 2005).

The last 8 years have witnessed a proliferation of satellite platforms with a large
number of sensors (e.g. Terra and ENVISAT) and improved spatial resolutions (e.g.
IKONOS-2 and Quickbird data have pixels that cover an area of 16 m2 or less) that
can also serve the needs of timely and cost-effective resource management (Franklin,
2001). Our focus is on ‘passive’ remote sensing systems, although we acknowledge
the benefits of ‘active’ systems (see Davis and Roberts, 2000; Kasischke et al.,
1997).

Remotely sensed data are used primarily in ecological research to charac-
terize land cover, describe habitat structure and derive measurements of biophys-
ical properties. The ability of remotely sensed variables to act as surrogates
for important ecological characteristics (e.g. biodiversity, productivity) is a func-
tion of the closeness of the relationship between the measured radiation and
the environmental variable of interest. ‘State’ variables are those that can be
described directly by the measure of electromagnetic radiation, such as leaf
area index and biomass (Curran et al., 1998; Curran, 2001). However, it is
most often environmental variables that are indirectly related to the actual radi-
ation measure, such as biodiversity and productivity, that are of interest to
ecologists. There are a wide variety of options to choose from to exploit
known relationships between values of optical/microwave data and the biophy-
sical properties of ecological entities (for reviews, see Franklin, 2001; Davis
and Roberts, 2000). The following section presents an overview of commonly
used remote sensing data enhancements and key ecological targets typically
investigated.

10.4.1 Spectral enhancements

Considering passive optical data only, numerous spectral transformation methods
have been developed to concentrate and accentuate the biophysical signal from the
surface into an enhanced spectral ‘feature’ (Roberts et al., 1998). Spectral vegeta-
tion indices (VIs) have been used since the late 1960s, with continued evolution
of new types of VI and uses. Advances in technology for both spectral sensing
platforms and analytical techniques have led to a wide range of applications for
VI, ranging from evapotranspiration estimates to forest structure quantification
(Wulder, 1998).
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The normalized difference vegetation index (NDVI) has become the most
extensively used VI in ecological remote sensing. NDVI is a dimensionless
spectro-radiometric measurement derived from optical remotely sensed data that
is correlated to micro- and macro-level characteristics of plants (for review, see
Pettorelli et al., 2005). It was initially developed as a measure of green leaf biomass
(Tucker, 1979) but has also been used effectively in mapping other vegetation
attributes, such as percentage cover, stem density, stand health, etc.

Since its introduction almost 30 years ago, the Kauth Thomas (KT or Tasselled
Cap) image transformation has proved to be versatile in ecological remote sensing
applications (see Kauth and Thomas, 1976; Crist and Ciccone, 1984). This
transformation involves the statistical rotation of multispectral data space into a
set of physically meaningful VIs that describe scene brightness, greenness and
wetness. Brightness has positive loadings in all reflectance bands and corresponds
to overall scene brightness, or albedo (Crist and Ciccone, 1984). Greenness, like
many other correlates of vegetation amount (e.g. NDVI), is a contrast between the
visible bands (especially Landsat TM band 3) and the near-infrared (Landsat TM
band 4). Wetness presents a contrast of the visible and near-infrared bands (weak
positive loadings) with the mid-infrared bands (strong negative loadings). Cohen
et al. (1995) found that wetness was least sensitive to topographic variation, and
therefore more powerful for predicting forest structural attributes. KT variables have
been used in a variety of ecological applications, such as forest canopy mapping
and selective harvest detection (Cohen and Fiorella, 1998).

10.4.2 Land cover

Spectral data have been used most often to derive some variation of a map of
land-cover type (vegetation, biotype) or quality (biomass, NPP), from which habitat
distribution (Osborne et al., 2001; Suárez-Seoane et al., 2002; Venier et al., 2004),
measures of abundance (Luoto et al., 2002a) or biodiversity (Luoto et al., 2002b;
Debinski et al., 1999; Waser et al., 2004; Tognelli and Kelt, 2004) are classified
(see section 10.5). Land-cover mapping determines the current composition and
distribution of landscape attributes, and this is subsequently used as the basis
for assessing future change. Regions (Homer et al., 1997, Huang et al., 2003),
nations (Cihlar et al., 2003), continents (Stone et al., 1994) and the globe (Hansen
et al., 2000; Belward et al., 1999) have been mapped at various spatial resolutions
with a range of remotely sensed data inputs. Satellite imagery efficiently provides
information about vast areas and is, therefore, a useful tool for land-cover mapping
across large extents. Neither aerial photography nor field data can provide equal
amounts of information as efficiently (Franklin et al., 2003).

Digital image classification is a common approach for predicting the categorical
class membership (e.g. forest type) of an observation (pixel), based on spectral
band response values. Multitemporal and multisensor spectral measurements, along
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with GIS data, can be used to add explanatory variables to an analysis that may
help discriminate categories of interest (e.g. forest vs. grassland). Variations in the
structural attributes of the forest stand may have a greater effect on the reflectance
characteristics than tree species composition. Therefore, other mapped environ-
mental variables associated with, or controlling, forest vegetation distributions, such
as those related to terrain (digital elevation models), geology, soils, climate or land
use, can be combined with image data in the classification process in various ways
to aid forest type discrimination.

10.4.3 Habitat structure

A number of studies beginning in the 1950s have empirically and theoretically
explored the relationship between pixel-level reflected absorbed and transmitted
radiation and habitat structure characteristics. Most studies that estimate vegeta-
tion structural and biophysical parameters from remotely sensed data have used
empirical methods to relate spectral data and various image derivatives to vegeta-
tion characteristics. If these parameters are strongly correlated with remotely sensed
data, they can be used to predict those biophysical attributes over large extents
(Woodcock et al., 2001).

Structural variables allow ecologists to better discriminate forest habitat types
for conservation planning purposes. Based on the framework of Diamond (1988),
habitat quality represents the diversity of resources as defined by habitat diversity
and structural complexity (i.e. in both vegetative structure and types) (Stoms and
Estes, 1993). Using remotely sensed data, forests are often characterized in terms
of inventory parameters, which provide detailed data on the location, arrangement,
distribution and pattern of forest resources (Wulder, 1998). Generally, inventory
parameters such as vegetation type, canopy cover and canopy height are linked to
habitat structure which has been recommended for assessing wildlife resources and
planning conservation efforts (Roberts and Davis, 2000).

Remote sensing approaches have involved the characterization of canopy or
crown cover (also described as crown closure – the vertical projection of vegetation
onto the ground when viewed from above) with a good deal of success (Davis
and Roberts, 2000). Authors have attributed the success of these studies to the
dominance of canopy cover in the radiation ecology of their site environments.
A variety of approaches (using passive and active remote sensing instruments) have
been developed to map canopy cover because this variable has been a primary
motivator of environmental/biophysical remote sensing research (Franklin, 2001).
Canopy height is an important hybrid variable in forest biodiversity studies (Davis
and Roberts, 2000). Several researchers have reported relationships between canopy
height and spectral measurements (Franklin et al., 1986; Cohen and Spies, 1992;
Danson and Curran, 1993; Jakubauskas and Price, 1997). Variability caused by
topographic variation is often problematic in most landscapes, resulting in imprecise
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representations of vegetation structural properties (Franklin et al., 2003).
Topographic effects may be minimized either by stratifying the study area and
forest type to zero-slope or by including a slope variable in regression models.
Stand density is defined as the number of individual trees per unit area. Stand
density is limited in its applicability to forest ecosystem studies, where measures
such as cover, height and volume are more commonly required for habitat char-
acterization and prediction (Davis and Roberts, 2000). Density, however, may be
of greater importance in semi-arid and arid regions (more heterogeneous cover),
where vegetation density and cover are more highly variable across the landscape
(Franklin and Turner, 1992).

Remotely sensed data have been employed in the measurement of many structural
variables other than those discussed above, such as stand volume (Ardo, 1992,
Oza et al., 1996), basal area (Franklin et al., 1986; Danson and Curran, 1993) and
fire fuels estimation (Stow, 1995; Cosentino et al., 1981). Several researchers have
adopted comprehensive approaches to measuring forest stand structural variables
and have either attempted to determine the total stand structural factor contribution
to stand spectral response, or have evaluated the total stand structural information
contained within various spectral vegetation indices (Danson and Curran, 1993;
Jakubauskas and Price, 1997; Steininger, 2000). This approach can help ecologists
learn more about the contributions of component hybrid variables to overall spectral
response, rather than only knowing the relationship between spectral response and
a single hybrid variable.

10.4.4 Biophysical processes

An increasing amount of attention is being paid to the representation of variables
that represent ecological processes using remotely sensed data. Remotely sensed
measures of ecological process and productivity include leaf area index (LAI) and
net primary productivity (NPP) (Wulder, 1998). Productivity is seldom measured
directly (in the field) but is estimated from associated variables, such as temperature,
precipitation, solar insolation, actual and potential evapotranspiration, biomass or
leaf area index (Davis and Roberts, 2000).

Leaf area index (LAI) is the standard expression for the leaf area of a plant
community, defined as the total leaf area per unit ground cover. LAI is an important
biophysical attribute of plants because of its potential as an indirect measure of vege-
tation canopy energy, gas and water exchanges (Chen and Black, 1992). Maximum
LAI has been correlated with mean annual temperature, length of the growing
season, mean annual minimum air temperature and water availability (Gholz, 1982;
Wulder, 1998). Field-measured LAI measures are strongly correlated to VIs, espe-
cially NDVI (Chen and Guilbeault, 1996). Unfortunately, the relationship between
LAI and NDVI is frequently non-linear, and can be erroneously lower due to canopy
shading in mature forest stands. Stratification of NDVI images by vegetation or
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land-cover class is therefore often used for robust estimation over regional scales
(Wulder, 1998).

Net primary productivity (NPP) is defined as the net flux of carbon from the
atmosphere into green plants per unit time. NPP refers to a rate process, i.e. the
amount of vegetable matter produced per day, week or year. Estimates of NPP
are based on ecological models which require detailed inputs, many of which are
feasible only when acquired using remote sensing (Wulder et al., 2004). Numerous
studies have shown that NDVI is related to ecosystem function, particularly NPP
(Friedl et al., 1994; Ramsey et al., 1995). Running (1990) incorporated surface
temperatures derived from advanced very high resolution radiometry (AVHRR)
with annually integrated NDVI to provide better estimates of NPP.

10.5 Species distribution models

Species distribution models (SDMs) have long been a staple in resource conserva-
tion and management efforts, as well as research on the effects of climate change.
The most commonly used medium is a map of plant species distribution, which can
subsequently be used to derive maps that show suitable habitat characteristics for
particular animals (Scott et al., 2002; Franklin, 1995, Guisan and Zimmermann, 2000;
de Leeuw et al., 2002; Woodcock et al., 2002). These SDM rely on the digital avail-
ability of important environmental variables that influence plant (and subsequently
animal) distributions. The product of SDMs, habitat suitability maps, can be used
to show current distributions, identify possibly suitable (potential) habitat currently
unoccupied, and predict the probable effects of changing environmental conditions.
Guisan and Zimmermann (2000) reviewed the increasingly large variety of statistical
methods used to quantify the species–environment relationship and discuss some of
the conceptual considerations important in method selection. Although basic statistical
methods (e.g. linear regression) are now available as part of many GIS software pack-
ages, many of the assumptions they make about data (e.g. independent observations,
linear relationships between response and predictors) are violated with biogeograph-
ical data. More sophisticated statistical analysis is usually done using dedicated or
user-written statistical software (for recent overview, see Guisan and Thuiller, 2005).
Austin (2002) observes that the continued use of inappropriate statistical methods for
SDMs stems from a long-standing disconnect between the ecological knowledge of
statisticians and the statistical abilities of ecologists. Austin (2002) notes that linear
relationships are still often used in models that describe species–environment relation-
ships, despite both ecological theory and empirical evidence that refute this (Austin,
1987, 2002; Bio et al., 1998). The use of remotely sensed data and the functional gradi-
ents they describe (Müller, 1998) in SDMs increases the need for more exploratory and
flexible statistical methods.

Table 10.2 summarizes selected recent studies that have integrated GIS and
remotely sensed data to model species distribution for inventory, atlas or biodiver-
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sity applications. Climate and topography are the most often used GIS variables,
and land cover and NDVI are the most often used spectral variables. Climate and
NDVI are quite similar with respect to the biotic and abiotic factors they repre-
sent, although NDVI generally has higher spatial resolution and lower temporal
resolution.

Venier et al. (2004) compared MSS-derived land-cover maps to those derived
from AVHRR as predictor variables (along with climate) in a model to predict
distribution of bird species. They found that, despite differences in spatial resolu-
tion, both MSS and AVHRR land-cover maps produced similar results, and that
they could not discriminate between the direct and indirect (e.g. through land cover)
effects of climate (Venier et al., 2004). Frescino et al. (2001) found that both clas-
sified and raw TM data resulted in better predictions of forest structure compared
to AVHRR-derived NDVI. They suggested that classified spectral data, such as
land cover, can provide more information than raw spectral data because ecological
characteristics and neighboring pixels add context during the classification process
(Frescino et al., 2001). In models used to predict vegetation distribution in Southern
California, Franklin et al. (2000) found that topographical variables were useful
to discriminate between physiognomically similar (and therefore spectrally similar)
chaparral species. NDVI has also been used to characterize habitat type by calcu-
lating a maximum value composite (MVC) over a 12 month period (Osborne et al.,
2001) or as a surrogate for energy (Cumming, 2002). Principal components analysis
of the MVC data has also been used to decompose the time series into a sequence
of spatial and temporal components (Suárez-Seoane et al., 2002).

Some studies have investigated the relationship between environmental factors
and vegetation indices by using VI as a response variable. In a regression tree
model with greenness vegetation index (GVI) as the response variable, Michaelsen
et al. (1994) found that vegetation type was the most important predictor variable,
followed by burning treatment (burned areas experienced greater greenness). The
relationship between elevation and GVI was more complex and they observed that,
during the growing season, elevation acted as a surrogate for soil properties but
that after May the relationship became inverse, possibly suggestive of tempera-
ture/moisture differences (Michaelsen et al., 1994). In a model for the western USA,
Stoms and Hargrove (2000) found that precipitation, temperature and available soil
water capacity were the most important predictors of NDVI in undisturbed areas.
Their model predictions deviated from actual NDVI values in areas of urban or
agriculture land use (Stoms and Hargrove, 2000).

Landscape pattern and heterogeneity are also important predictors in SDM. In a
habitat model for an endangered bird species in India, Jeganathan et al. (2004) found
that density of bushes and trees, as measured on the ground and remotely, was the
most important predictor variable. They compared ground-based bush/tree density
information to that derived from satellite imagery and found that models based on
the imagery performed better, although they suggest that ground-based surveys may
be more directly relevant for habitat management decisions (Jeganathan et al., 2004).
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Additional ‘spatial’ habitat variables can be subsequently derived from a digital
map of habitat complexity/characteristics (Coops and Catling, 2002).

Statistical models that combine spatial and spectral data have also been used to
produce maps for subsequent analysis, such as maps of fuel loads and fire regimes
(Rollins et al., 2004) and to provide input maps for dynamic landscape simulation
models (Franklin, 2002). Habitat suitability maps for several species have been
combined to indicate possible levels of biological diversity within an area.

10.5.1 Biodiversity mapping

Biological diversity, or biodiversity, refers to variability within species, among
species and in ecosystems. The applications discussed here are concerned with
variability among species, also referred to as species richness. The ability to measure
and monitor biodiversity, particularly critical in the context of environmental change
(Nagendra, 2001), requires adequate, updated species inventories, as well as detailed
knowledge of species–habitat relationships (Scott et al., 1993). The separate effects
of climate change and land cover change on habitat loss worldwide are substantial,
however, their interaction could be even more devastating (Travis, 2003).

SDMs have been used to produce habitat suitability maps for several different
species, which have been combined and used as a surrogate of biodiversity (Ferrier,
2002). Availability of species data is often the limiting factor for this technique
(Ferrier, 2002). Remotely sensed variables have also been used as a surrogate for
biodiversity, most often by relating it to NPP, for which NDVI is used as a surrogate
(Kerr and Ostrovsky, 2003; Aplin, 2005; Skidmore et al., 2003; Turner et al., 2003).

Skidmore et al. (2003) explain the correlation between NDVI and biodiversity
as being a function of the debated diversity–productivity hypothesis in ecology.
Increased availability of resources in highly productive ecosystems generally results
in a greater number of species in a given area. Empirical evidence suggests that
the relationship is actually unimodal, with maximum biodiversity associated with
some optimal value of productivity, beyond which biodiversity begins to decrease.
Skidmore et al. (2003) summarize possible explanations for this.

While others have used AVHRR NDVI data to confirm a unimodal relationship
between species richness of plants and productivity (Oindo and Skidmore, 2002),
Seto et al. (2004) did not find a quadratic model to be a significantly better fit than
a linear model for bird and butterfly species richness in the Western USA. While
they observed a positive correlation between bird and butterfly species richness
and NDVI mean, maximum and standard deviation, they were unable to identify
any functional relationships. However, they note that the relationships vary, based
on scale, location and taxonomic group (Seto et al., 2004). Linear relationships
may be observed empirically if the range of the species studied extends beyond the
study area sampled, as Austin (2002) noted for species response to environmental
gradients.
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Seto et al. (2004) suggest that using NDVI as a proxy for species richness
improves upon more subjective and time-consuming classification approaches,
which require some a priori (and often subjective) correlation between species
richness and land cover. As a result, resource managers and ecologists may eval-
uate more quickly and efficiently the potential biodiversity impacts of alternative
management and conservation strategies. Luoto et al. (2002b) determined that
environmental variables derived from a combination of satellite imagery (Landsat
TM) and elevation data provided a reasonable surrogate for plant species diversity.
Cumming (2002) developed generalized linear models to predict tick distribution in
Africa and found that monthly climate variables (temperature extremes, precipita-
tion) added more information than monthly mean NDVI values, while mean annual
NDVI performed better than annual climate variables. He suggested that this was
related to the temporal lag in the response of NDVI to climatic changes, rendering
NDVI a less sensitive variable at finer temporal resolutions (Cumming, 2002).

Where there is obvious and strong congruence between remote sensing-derived
land cover classes and biological distributions, retaining sufficient examples of each
land cover class has been used successfully as a conservation strategy (Ferrier,
2002). Species richness has also been correlated with habitat heterogeneity, typically
represented by an index describing how many different land cover classes occur
within a unit (Stoms and Estes, 1993), although elevation range within a transect
has also been used (Tognelli and Kelt, 2004). While extremely heterogeneous
landscapes tend to have low primary productivity, variation in NDVI can be used
to represent heterogeneity (Oindo and Skidmore, 2002). Thes authors used the
standard deviation of interannual (monthly) maximum NDVI values as an index of
variation in vegetation structure and composition.

As the functional gradients they represent are location-specific, relationships
between species distributions and spectral reflectance values are often not trans-
latable beyond the study area in which the model data were collected. Nagendra
(2001) suggests that species–spectral relationships might have to be recalculated
for each new image, reducing the overall increase in efficiency of using remotely
sensed variables as proxies for biodiversity. Seto et al. (2004) suggest that locations
outside of their study area may have similar NDVI values but different effects on
species richness.

One of the earliest conceptual frameworks for integrating GIS and remote sensing
to map species distributions was developed by what is now the US Geological
Survey’s National Gap Analysis Programme (GAP; Scott et al., 1993). Origi-
nally used to show ‘gaps’ in conservation status of land relative to the distribu-
tion of habitat for endangered or threatened vertebrate species, GAP analysis has
evolved into a well-established technical and organizational framework for mapping
biodiversity ‘elements’ (plant species, communities or habitats) (Jennings, 2000).
Jennings (2000) provides an overview of the methods involved: (a) a land-cover
map based on Landsat TM imagery is produced by some combination of photogram-
metry, supervised and unsupervised classification, and the thematic accuracy is
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assessed; (b) land cover maps and GIS data (e.g. elevation, soil) are used in a
SDM to produce a habitat suitability map; (c) land stewardship maps are generated,
based on biodiversity management categories; and (d) biodiversity elements that
are underrepresented in conservation areas are identified. These GAP vegetation
and habitat suitability maps produced have subsequently been used as predictor
variables for other studies (Frescino et al., 2001). One incidental but no less impor-
tant result of the success of GAP analysis has been the increase in GIS and remote
sensing capabilities among biologists and ecologists (Jennings, 2000).

10.6 Change detection

Land-cover change detection, one of the most common uses of remotely sensed
data, is an essential component of ecological monitoring (Aplin, 2005). Change
detection and mapping requires land cover maps from at least two time periods
(see Figure 10.1), and is possible only if changes in the surface phenomena of
interest result in detectable differences in image radiance or emittance (Lunetta
et al., 2002). The level of mapping ranges from simple (i.e. change/no change)
to complex (i.e. several ordinal change categories) as a function of the dominant
land use, prospective disturbance types, management practices and study objectives
(Rogan et al., 2003).

The latter scenario is of particular interest to researchers involved in large-
area habitat monitoring programmes, where many different types of land cover
changes can occur and must be accounted for, e.g. pest infestation, logging and
wildfire (Rogan and Miller, 2006). While the most common method of habitat
monitoring requires the categorical comparison of independently classified maps,
this approach has several drawbacks: (a) high cost (and time consumption) of
mapping and re-mapping; (b) inability to detect subtle land cover modifications; and
(c) categorical and positional errors in both land cover maps are compounded when
compared. The production of maps depicting change can facilitate an improved
understanding of both the agents of change and the biophysical linkages between
surface reflectance and the change agents, e.g. NDVI can be directly linked to
multitemporal changes in green vegetation cover (Lunetta et al., 2002). Rogan
et al. (2003) show the increase in accuracy of change maps when GIS variables
representing topography are included in the analysis.

10.6.1 Case study: using GIS and remote sensing for large-area
change detection and efficient map updating

This case study presents a hybrid change detection technique that integrates GIS
and remotely sensed data for efficient change map updating. Two sophisticated,
parametric and non-parametric classification techniques, generalized linear models
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100 100 200 Kilometers0

Urban
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Figure 10.2 Study area location in San Diego County (California). Landsat 5 TM (2000)
bands 7, 5 and 4 draped over a 30 m digital elevation model

(GLMs) and classification trees (CTs), were evaluated in terms of change map
accuracy, as measured by receiver operating characteristic (ROC) plots.

10.6.1.1 Study area

San Diego County (Figure 10.2) is composed of a variety of heterogeneous land
cover types, including shrub-grassland (60%), conifer and hardwood forest (12%),
agriculture (6%) and urban (18%). (USFS, 2001). Mean annual precipitation is
low (600 mm) and is correlated with elevation, which ranges from sea level to
1991 m. The area is currently undergoing dramatic population growth and acceler-
ated and extensive land cover change due to natural and anthropogenic disturbance
(Stephenson and Calcarone, 1999). These spatially and temporally diverse distur-
bances result in land cover changes ranging from dramatic (e.g. wildfire burn scars,
land development) to very subtle (e.g. conifer pest infestation, post-fire regenera-
tion) (Rogan et al., 2002). More than 50% of the county is ‘Category 4’ GAP land
management status (i.e. unprotected habitat) (Scott et al., 1993).

10.6.1.2 Data and methods

Two Landsat TM-5 images acquired 8 and 17 June 1996, and two Landsat ETM-7
images acquired 11 and 12 June 2000 (path 40/row 37 and path 39/row 37,
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respectively) provided coverage for San Diego County. The images were geometri-
cally registered, resampled and normalized for atmospheric and illumination effects,
using a procedure described in detail in Rogan et al. (2003). Six spectral vari-
ables (Kauth Thomas) and five GIS variables (slope, elevation, aspect, vegetation
type and previous fire) were used to predict land cover change/no change. The
Kauth Thomas variables were: change in brightness (MKT1), change in greenness
(MKT2), change in wetness (MKT3), stable brightness (MKT4), stable greenness
(MKT5) and stable wetness (MKT6). The modelling dataset was divided into 665
training cases used to develop the models, and 165 test cases to assess the clas-
sification accuracy of the model predictions. A full description of the field data
collection protocol is provided in Rogan et al. (2003).

Classification trees (CTs) and generalized linear models (GLMs) were used to
develop models that predicted probability or suitability of land cover change. The
CT model was pruned to 11 terminal nodes, based on cross-validation (Breiman
et al., 1984). The GLMs were developed based on a combination of stepwise
and subjective, iterative variable addition and subtraction methods, with a goal of
minimizing the Akaike information criterion (AIC) statistic (Akaike, 1973; Hastie
et al., 2001), using all significant variables. The first GLM was based on linear
relationships between change and the predictor variables (GLM_linear). A more
complex GLM (GLM_poly) was tested that contained interaction terms suggested by
the CT model structure, and non-linear relationships between the predictor variables
and likelihood of change. More flexible non-linear relationships were explored
using generalized additive models (GAM) (Franklin, 1998; Miller, 2005) and, where
appropriate, were specified as polynomials (up to third order) or piecewise linear
terms.

10.6.1.3 Results

CT models consist of a series of hierarchical binary splits, the thresholds of which
are selected to maximize homogeneity in the two resulting splits. Therefore, the
order in which variables are used can be an indication of their relative importance,
although scale is also a factor (broad-scale variables are generally used before
fine-scale variables). Figure 10.3 shows the CT models for training and test data.
Rectangles represent terminal nodes with the majority class (1 = change, 0 = no
change), and the fraction below is the number of cases misclassified/total cases (see
Rogan et al., 2003).

MKT2 (change in greenness) was the lead split, followed by vegetation, MKT3,
MKT6, slope, fire and elevation. The right branch of the tree is associated with
increases in the magnitude of greenness values between the two image acquisition
dates. It is interesting to observe that this greenness branch was also associated
with MKT6 (stable wetness). Due to acute changes in average precipitation levels
between the image acquisition dates, soil–plant moisture content likely changed
substantially. Recent research has demonstrated the utility of including stable
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features with change features in change mapping, because stable features permit
discrimination among more subtle change classes (Cohen and Fiorella, 1998; Rogan
et al., 2003). This is because different land cover changes can produce similar
spectral signatures in measurement space (Cohen and Fiorella, 1998).

The left branch of the tree is associated with landscape changes related to subur-
banization, land clearing and wildfires. These changes can be manifested spectrally,
and produce substantial disturbance-specific changes in soil brightness, green vege-
tation cover and soil–plant moisture content. The most important spectral variables
associated with disturbance were MKT2 (change in greenness), MKT (change in
greenness) and MKT6 (stable wetness). These changes are also correlated with
topographic variables. Gradual slopes (< 4�7�) were associated with change (most
likely development), as were low elevations (< 104 m). This evidence compliments
the association between changes in greenness, slope and elevation, and reveals a
scenario of decreases in green vegetation cover and soil–plant moisture at low
elevation levels and shallow slope gradients in San Diego County for the time
period examined. While such a scenario is not necessarily surprising to local ecolog-
ical experts and landscape planners, the results of this case study provide spatially
explicit information on the actual locations of landscape changes in association
with myriad disturbance agents and events. Currently, this information can only
be revealed in this spatially continuous context at a 30 m minimum mapping unit,
using the integration of remotely sensed data, environmental variables and statistical
models in a GIS.

Table 10.3 illustrates how the ability to specify non-linear relationships improves
the GLM’s ability to predict probability of change. Figure 10.4 shows the general-
ized additive model (GAM) plots of the smoothed effect of the predictor variables
on change. Elevation, MKT1, MKT2 and MKT3 all appear to have non-linear
effects on probability of change. When specified as polynomials in the GLM,
all four variables except MKT3 improved the model fit (Table 10.3). MKT2 is
also the most important variable in GLM_poly, and was the most important non-
categorical variable in GLM_linear. GLM_poly has a lower AIC statistic, indicating
that it is a parsimonious model that fits the data much better than GLM_linear.

Table 10.3 Model AIC and reduction in deviance for each variable used in GLM

Model Fire Aspect Elevation Vegetation MKT1 MKT2 MKT3 MKT4 MKT2:
MKT3

GLM_linear
AIC = 419

53 7 < 1∗ 27 2∗ 17 9 1∗ –

GLM_poly
AIC = 223

53 7 16(2nd) 22 28(3rd) 114(2nd) 10 (3rd) 16(3rd) 16

Numbers in parentheses show polynomial order.
∗Variable was insignificant at p < 0�01.
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Figure 10.4 Response curves based on GAMs for predictor variables that were specified to
have non-linear relationships with change

Model accuracy was assessed using test data and the area under the curve (AUC)
of receiver-operating characteristic (ROC) plots. ROC plots are a threshold- and
prevalence-independent metric used to measure how well a model can discrimi-
nate between two outcomes: AUC = 0�5 shows no ability, while AUC = 1�0 shows
perfect ability (Fielding and Bell, 1997). The non-linear GLM also had higher
model accuracy than the linear GLMs. (Figure 10.5).

The GAMs in Figure 10.4 show the non-linear relationships between probability
of change and elevation, MKT1, MKT2, MKT3 and MKT4. Elevation is strongly
inversely related to change in San Diego County, as the urban development occurs
in the lower elevation area near the coast. MKT variables are expected to have a
non-monotonic relationship with change, as they show increased values (> zero)
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Figure 10.5 ROC plots for all three models show that the more flexible models (GLM_poly,
CT) have higher accuracy than the linear GLM

and decreased values (< zero) in brightness, greenness and wetness. The GAM plot
of elevation shows a distinct threshold at 400 m, above which change is not likely
to occur, and below which probability of change increases as elevation decreases.
This particular threshold does not appear in the classification tree (although the
threshold of 104 m is used in a low split), most likely because elevation is correlated
with many of the MKT variables, particularly change in greenness (MKT2), and
this effect is captured when these variables are used.

Classification accuracy based on the training data provides an optimistic view of
model accuracy: AUC for the CT and GLM_poly models were both high (0.97 and
0.96, respectively) and not significantly different. Classification accuracy using the
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test data was also high for the CT and GLM_poly models (AUC = 0�93 and 0.94,
respectively). Accuracy for the GLM_linear model was lower and significantly
different for both training and test data (AUC = 0�85 and 0.80, respectively).

10.6.1.4 Case study discussion

A comparison of state-of-the-art mapping algorithms was performed to detect land
cover change in San Diego County, California. Non-linear relationships between
the spectral and GIS variable to change/no change were important, as was the
combination of GIS and remotely sensed predictor variables. The success of the
non-linear methods is related to the evidence (from GAMs and linear GLMs) that
land cover modifications are complex and have multiple causative effects, and are
therefore not amenable to traditional linear modelling approaches.

10.7 Conclusions

An understanding of the environmental factors that determine species distributions
(type, abundance, level of diversity) has always been of great interest in ecolog-
ical research, but its importance has increased along with interest in studying the
consequences of changing environmental conditions. The ability to map, model and
monitor these distributions is dependent upon the ability to collect, manage and
analyse data that adequately describe them. GIS and remote sensing have become
indispensable tools in this regard, providing increasingly more ecologically relevant
data at higher spatial and temporal resolution, as well as the methods to derive more
information from the data and to analyse them statistically.

A more extensive integration of GIS and remote sensing for ecological mapping
and monitoring has yet to be fully realized. Much progress has been made in SDM
based on GIS data and methods, but investigation into the potential predictive ability
of remotely sensed variables, beyond land cover and NDVI, has lagged behind. We
see the following as areas in which integration of GIS and remote sensing can have
significant effects on ecological research:

• Use of continuous or gradual properties of spectral data should be high priority
in SDM; functional gradients can enhance models based on primary and direct
gradients.

• More attention should be placed on the ability to consistently characterize biolog-
ical diversity at multiple scales, using remotely sensed and GIS data.

• In addition to using the reflectance values, the unique synoptic perspective of
remote sensing for quantifying landscape characteristics should also be more
fully studied.
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• Change detection models should explore more flexible statistical methods and
include ancillary GIS data.
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11.1 Introduction

Applications of remotely sensed data for monitoring inland, arid-zone ephemeral
wetlands are less conspicuous than studies of their more permanent temperate
counterparts. This imbalance in the literature is unfortunate given that, as in the
Sahel, ephemeral wetlands are critical life-bloods for sensitive ecological habits and
the near-subsistence survival of the local population. Their monitoring by remote
sensor data would result in a greater level of predictability and instil a stronger
sense of confidence in their sustainable management. In other words, a temporal
application of remote sensor data would provide a consistent yardstick with which to
measure the annual and seasonal variability of the areal extent of transient wetlands
and thus monitor changes to natural ecosystems and human lifestyles that directly
depend on them.

11.1.1 Ephemeral wetlands

By definition, the size and duration of arid-zone ephemeral wetlands are highly
variable. Ephemeral wetlands exist at a variety of temporal scales and are almost
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completely reliant on seasonal precipitation and run-off (Whittaker, 1998). Across
the Sahel they represent patches of aquatic habitats for resident birds, mammals,
amphibians and reptiles, including newly-documented relict populations of the Nile
crocodile (Crocodylus niloticus). These wetlands act as crucial stop-over sites and
wintering grounds for migratory water birds (cf. Roux and Jarry, 1984; Mullié et al.,
1994; Kingsford, 1995; Simmons et al., 1999; Shine et al., 2001). In addition, the
ephemeral wetlands of the Sahel sustain local livelihoods by providing water and
grazing for livestock, humid soil for flood recession agriculture, wild foods and
medicinal plants, forest-derived products and habitats for wild animals and fish.
These human-based activities are centred on traditional multi-use systems, which
have existed in equilibrium with the wetlands for centuries but more recently have
been stretched to their limits by increases in population numbers and the switch to
more sedentary lifestyles. Furthermore, federal policies on wetland resources have
been overly exploitative; for instance, agriculture associated with the ephemeral
wetlands has been greatly intensified through draining and levelling and by the
introduction of mechanized tools and the use of modern fertilizers and pesticides.
Yet despite considerable federal investment there is growing evidence to suggest
that these modern systems are less productive than the traditional multi-use systems
they were designed to replace (Shine, 2002). Many alternatives are being currently
explored by central government, aid agencies and NGOs, but all policies aimed
at the sustainable preservation of fragile ecosystems must first address the urgent
need to improve base data and provide a means with which to maintain consistent
long-term inventories.

11.1.2 Remote sensing of ephemeral wetlands

A press release, dated 16 February 2005, from the European Commission’s Direc-
torate General, Joint Research Centre (DG JRC), underlined continued support for
the implementation of an environmental information system based on satellite sensor
data for the monitoring of Africa’s natural resources, and specifically ‘the location
and timing of water resource replenishment and exhaustion’ using ‘land-resource
maps’ (EC, 2005). The initiative is in tune with the prospects of a programme on
global monitoring for environment and security (GMES) by the European Space
Agency due by 2008 to ‘� � � facilitate and foster the operational provision of quality
data, information and knowledge’, and where the DG JRC would be charged with
extending the application to Africa. Such calls for a coordinated collection of data
on natural resources in the developing world are long overdue. In the case of the
Sahel, the lack of detailed and up-to-date information on the geographic distribution
of ephemeral wetlands is not surprising. Sparse rural populations, poor infrastructure
and an underdeveloped economic base in many countries with low levels of GDP
are not particularly conducive to persuading governments to improve upon existing
collections of unstructured inventories, generally composed of sporadically revised



11.1 INTRODUCTION 271

maps and site-specific visual observations. This is in stark contrast to national poli-
cies in the developed world, where detailed, consistent and multitemporal remotely
sensed data form the cornerstones of many environmental monitoring projects
(inter alia, Stewart et al., 1986; Williams and Lyon, 1997; Harvey and Hill, 2001;
Dwiveldi and Sreenivas, 2002). Furthermore, the costs of remote sensor data for
governments in the developing world represent proportionally heavier investment
commitments and, along with equally expensive computer infrastructure, expertise
and institutional inertia, are major impediments to routine pragmatic implementa-
tion. However, and as recognized by the DG JRC, by not adopting remote sensing
technology many developing countries are forfeiting a valuable vehicle with which
to facilitate reliable, consistent and frequent snapshots of their ever-fluctuating
natural resource base, particularly their ecologically sensitive wetland habitats.

Given the geographic vastness and relative inaccessibility of many Sahelian coun-
tries, remote sensing is by far the most practical means by which to collect such
systematic multitemporal information on wetland variability, and as such is a valuable
precursor to effective management policies that could harmonize the balance between
ecological preservation and economic opportunity. Although works by Jensen et al.
(1986, 1987), Rutchey and Vilcheck (1994), Chopra et al. (2001), Harvey and Hill
(2001), Manson et al. (2001) and Shaikh et al. (2001) have all specifically addressed
inland,arid-zonewetlands,nonehasexaminedseasonal, annualand long-termchanges
of small, more ecologically sensitive, ephemeral wetlands, such as those in the Sahel.
In addition to financial restrictions, the long-term monitoring of scarce resources,
such as ephemeral wetlands, is also heavily dependent on the availability of consistent
remotely sensed data. In practice, many projects are compiled from a compromise of
space-borne, air-borne and field-based data, but mixtures need not necessarily devalue
results as longas theminimumscaleandmaximumrangeof thedataarewithin theprac-
tical requirements of the application (cf. Lee and Lunetta, 1995; Manson et al., 2001;
Harvey and Hill, 2001; Lyon, 2001). This rule is particularly important in economi-
cally underdeveloped and isolated areas such as the Sahel, where a full range of data
types is not normally available.

However, if economic and availability barriers can be breached, there are very
few technical reasons why air-borne and space-borne data should not form the
basis for routine wetland monitoring in arid parts of the world. Current spectral-
and spatial-based methodologies are well capable of producing high identification
and taxonomic accuracies. Techniques such as the Normalized difference vege-
tation index, the Normalized difference water index, tasselled cap, and standard
per-pixel classifications are frequently implemented with remote sensor data for
measuring biomass concentrations of wetlands in temperate landscapes (Jensen
et al., 1986; Ceccato et al., 2002; Maselli and Rembold, 2002). Applied to arid-
zone wetlands, the same techniques could measure the abrupt spectral and spatial
contrast between, on the one hand, water and biomass land covers associated with
ephemeral wetlands and, on the other hand, almost permanent arid surroundings
(Howland, 1980; Lyon, 2001). Admittedly, ephemeral wetlands are much shallower
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than their more permanent counterparts, which tends to produce spectral represen-
tations that are combinations of variable quantities of biomass, turbidity and basin
floors. This in turn leads to lower classification accuracies than those representing
more permanent and deeper water. Assuming satisfactory spectral differentiation,
semantic descriptions of ephemeral wetlands include, amongst others, the MedWet
(Farinha et al. 1996), the Martin (Stewart et al. 1980) or the UFSWS (Cowardin
and Myers, 1974) systems; the latter includes descriptions such as ‘unconsoli-
dated bottom, unconsolidated shore, emergent wetland and forested wetland’. The
Anderson et al. (1976) system is more harmonious with information extracted from
remote sensor data, although the temporal criterion as part of the definition of
wetlands, ‘� � � areas where the water table is at, near or above the land surface for a
significant part of most years � � � ’ does not strictly fit the ephemeral nature of arid
zone wetlands. Indeed, all of the established classification schemes are deficient
in some ways for labelling wetlands that are fleeting and highly sensitive to small
variations in rainfall patterns.

Bearing in mind the urgent need for long-term monitoring and inventory-building
of ephemeral wetlands and the technical feasibility of manipulating remote sensor
data to fulfil these objectives, this chapter outlines a multisource methodology using
a range of remote sensor data and GPS readings over a 44 year period. Such a lengthy
timescale invariably diminishes consistency in data across source and scale, relying
instead on availability; in our case, aerial photographs captured in the 1950s, Landsat
TM images taken in 1984 and 1985, and GPS readings collected in 1999 and 2000.
Naturally, such variety can introduce spatial discrepancies, especially as in the case of
the Sahel, where there are few identifiable features with which to geo-rectify multi-
scale and multitemporal images (Manson et al., 2001). Nevertheless, the available data
are of high quality, of the same geographical area and, more importantly, the coarsest
spatial resolution; that of the Landsat TM image at 30 m (< 0.1 ha) is well within the
scale requirements for measuring the extent of wetland areas (Jensen et al., 1986).
Furthermore, the rather ad hoc combination of these data replicates, to a large extent,
current methodologies implemented by financially limited governments in the devel-
oping world. The precise methodology involves the areal delineation of ephemeral
wetland boundaries from these remote sensing sources and GPS readings using a
combination of visual image interpretation, normalized difference vegetation index
(NDVI), tasselled cap and water body spectral segmentation. The results are used
to assess seasonal and annual wetland variability with respect to sustainable habitat
management and economic development of inland ephemeral wetlands in an arid
environment.

11.2 Ephemeral wetlands in Mauritania

For an example of Sahelian ephemeral wetlands, we focus on the country of
Mauritania in western Africa, a sparse country of just over two million people
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Figure 11.1 Location of the five ephemeral wetlands in the Hodh el Gharbi region, southern
Mauritania, Africa

scattered across approximately one million km2 of predominantly arid land. Our
methodology is centred on five freshwater ephemeral wetlands (Tamourt Goungel,
Tamourt Boichiche, Tamourt Oum Lellé, Gâat Sawana and Tamourt Tali1) in the
southern region of Hodh El Gharbi (Figure 11.1). Relative inaccessibility to the
region (only one paved road) has stifled the collection of data at the national
level, but the locations and variability of ephemeral wetlands are well known to
local herders and farmers. Rainfall variability generally increases with encroaching
aridity (Langbein, 1961; Williams, 1985) and this, in turn, controls the persistence,
size and duration of ephemeral wetlands in the arid zone. Temporal variability is
expressed using a coefficient of variation of inter-annual rainfall (CVIR). Areas
with a CVIR of over 30% are considered to be non-equilibrium dynamic environ-
ments (Ellis et al., 1994; Leach et al., 1999). Average CVIR for weather stations
in southern Mauritania (Ain Farba, Kobeni, Tamchekett, Tintane, Touil and Aïoun
El Atrous) is at 43%, well above the threshold for non-equilibrium (Figure 11.2).
As such, rainfall received in one wetland catchment can differ substantially from
its neighbours and, indeed, the nearest weather station (Table 11.1). In addition,

1 Tamourts are endorheic basins characterized by stands of Acacia nilotica, while Gâats form in
shallower, more open depressions and are dominated by aquatic vegetation.
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Figure 11.2 Mean annual rainfall at Aïoun (1946–2000)

Table 11.1 Annual rainfall data for southern Mauritania in 1999 and 2000

Weather stations Annual rainfall (mm)

1999 2000 Difference

Aïoun El Atrous 255�4 253�1 −2�4
Ain Farba 289�3 479�0 189�7
Kobeni 519�6 363�2 −156�6
Tamchakett 138�2 230�1 91�8
Tintane 228�8 422�8 194�2
Touil 513�4 458�9 −54�4

Regional mean 324�1 367�8 43�7
Regional total 1944�7 2207�0 262�3

Source: Services Météorologique, Direction de l’Environnement et de l’Aménagement Rural
(DEAR), 2000.

evapo-transpiration measurements range from 5.9 mm/day in Kiffa (west of the
study region) to 8.5 mm/day in Néma (east of the study area), with peaks during the
dry season (March–June). Such unpredictability tends to reduce confidence in rain-
fall instrument readings and opens the possibility for more spatially comprehensive
and consistent measurements from remote sensing.

11.2.1 Data and processing

Data were collected at intervals spanning half a century, from aerial photographs
taken in 1952–1956; from the Landsat-4 Thematic Mapper sensor in 1984–1985,
and from GPS readings recorded in 1999–2000. Each set was used to assess annual
and seasonal areal changes in five of the 244 ephemeral wetlands.

One of the earliest sources of reliable remote sensor data available for southern
Mauritania is a set of panchromatic aerial photographs, commissioned and owned by
the French IGN (Institut Géographique National). The aerial photographs were taken
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Figure 11.3 Aerial photograph of Oum Lellé. The ephemeral wetland is distinctive as an
area of dark hue and coarse texture, representing biomass and water in the midst of an
almost permanently arid and barren landscape. See Figure 11.3 for a low-altitude view

during 12–22 November 1956 (15 June 1952 for Tali) at a scale of approximately
1:50 000. The four November photographs were taken approximately 2–4 weeks
after the end of the habitual wet season, when wetland surface areas are typically
at their maximum levels; the photograph of Tali in 1952 was taken at the end of
the dry season, when the surface area was much lower than the maximum. All
wetlands are clearly visible on the aerial photographs as areas of much darker tone
and coarser texture than their arid surroundings (Figure 11.3). Low solar reflectance
off water, marked changes in vegetation healthiness and abundance between wet
and dry soils, and changes in shading due to inundation and recent flooding, all
contribute to sudden hue, tonal and textural changes that allow distinct boundaries
to be routinely defined and measured. Tamourts are specific types of local wetlands,
which are particularly discernible because of the characteristic presence of dense
stands of Acacia nilotica trees (noticeable across Oum Lellé on the low-altitude
photograph in Figure 11.4).

Two multispectral satellite images (path 201, row 049) were obtained from the
Landsat-4 TM sensor; one coinciding with the wet season taken on 21 October
1984, the other during the dry season on 15 April 1985. Allowing for the usual
caveats in change detection, both images are completely cloud-free, were taken at
approximately the same time of day, and have similar near-equinox sun angles. The
October 1984 wet season image is comparable with the aerial photographs taken
during the wet season in November 1956, whilst the image captured during the
dry season in April 1985 provides an opportunity to measure seasonal variations
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Figure 11.4 Low-altitude photograph of Oum Lellé wetland in southern Mauritania

during a year that formed part of an unusually prolonged period of low rainfall in
the region (Figure 11.2). This dry period had inevitable negative repercussions on
the abundance and vitality of the natural vegetation, and further emphasized the
abrupt changes in the environment between the wet/moist conditions and relatively
abundant vegetation within wetlands and the dry/very sparse vegetation of the
surroundings.

Translated into multispectral terms, distinct radiometric gradients between mois-
ture and aridness should be observable using all seven channels of the Landsat-4 TM
sensor data. One way to establish this distinctiveness between areas of vegetation
associated with the wetlands and the surrounding aridity is by using the standard
NDVI, which, in this chapter, is implemented using IDL®-modified programmes
from the Research Systems Inc. ENVI® software (ENVI, 2003):

NDVI = �NIRband 4 − VISband 3�/�NIRband 4 + VISband 3� (11.1)

The NDVI is a ratio of Landsat TM band 3 (red) and Landsat TM band 4
(near-infrared). In Figure 11.5, NDVI values representing a random cross-section
(X-profile) of the Tamourt Tali wetland are clearly evident as a sharp peak of
positive values, up and above the negative baseline of the surrounding aridity. This
sharp peak (the black X-profile) is of NDVI values representing the wet season.
NDVI values calculated from the Landsat TM image during the dry season for the
same wetland are less conspicuous, resulting in a much lower, unobtrusive peak
(the grey X-profile). Nevertheless, even these lower NDVI values are still capable
of measuring the contrast between vegetation (regardless of abundance) associated
with wetlands and the surrounding aridity of almost permanent lack of biomass.
The two profiles in Figure 11.5 are based on a small sample of NDVI values for one
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Figure 11.5 NDVI values of an X-profile across Tali during the wet season (black line) and
dry season (grey line)

wetland. If all the NDVI values representing both wet and dry seasons are compared,
it then becomes possible to visualize the total degree of variability. Figure 11.6
illustrates that the vast majority of the NDVI wet and dry season values are almost
identical, underlining a highly stable, if somewhat sparse, distribution of vegetation.
The two main differences are the greater proportion of pixels representing the wet
season (NDVI values above 0, indicating a greater abundance of vegetation) and,
conversely, the greater number of pixels representing the dry season (NDVI values
below –0.2, characteristic of a scarcity in vegetation cover).

NDVI values are reliable surrogate measures for wetland areas in arid areas
such as southern Mauritania, where the vast majority of dense vegetation cover
is associated with some level of standing water. NDVI values are suitable for
locating bodies of water in arid areas, but not for demarcating their exact spatial
outlines. Instead, an iterative binary multispectral classification of the Landsat TM
images into areas of water and non-water was necessary to augment the NDVI
measurements. Statistically, the multispectral signature of standing water is highly
distinctive, especially when compared to the high reflective properties of the arid
surroundings. As a result, an unsupervised ISODATA clustering algorithm was
sufficient to classify distinct pixels into a thematic class labelled as standing water.
The supervised classification was implemented using ENVI® (RSI) software and
modified through a series of iterative masking cycles of 12 classes at a time. Class
separability statistics measured the distinctiveness of water bodies at the 90% level.
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Figure 11.6 NDVI pixel values of Landsat TM images taken during the dry and wet seasons

Finally, a positional co-occurrence of high NDVI values and the water class,
both derived from the Landsat TM images, resulted in the identification of all five
ephemeral wetlands in both wet and dry seasons. It was then a straightforward
matter of calculating the surface areas using descriptive statistics. The process was
hindered only by areas of the images that represented vegetation associated with
seasonal rivers. However, these areas were quickly identified (and subsequently
eliminated) both by their narrow linear patterns (uncharacteristic of basin wetlands)
and by their distance from the known location (based on local information) of
the five ephemeral wetlands. Indeed, information on the spatial positioning of
these established yet seasonal wetlands was further confirmed by the collection of
ground-based coordinates, using a hand-held GPS receiver.

The most recent maps of the wetlands were created in situ by walking around
the five in our study using a Garmin 2 plus GPS in 1999 and 2000 (Garmin, 1997).
The GPS created track files based on records taken every 30 s. This method is well
suited to mapping small, arid-zone wetlands but time consuming for large wetlands.
The maximum extent (end of the wet season) of the wetlands was recorded in
October–November 1999 and a minimal value (during the dry season) was recorded
in March 2000. The track files created by the GPS were downloaded using Pcx5
and exported to ESRI®’s ArcGIS® (ArcGIS 2003), re-projected to the national
coordinate system and then converted to polygons in order to calculate surface area.

The surface areas of the five ephemeral wetlands calculated using the four
types of data are shown in Table 11.2. Maximum and minimum surface areas are
shown for 1984–1985 and 1999–2000 using Landsat TM sensor data and GPS
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Table 11.2 Surface areas (ha) of five ephemeral wetlands during maximum and minimum
periods across five time intervals

Ephemeral wetland Aerial photos Landsat-4 thematic mapper Differential GPS

Nov 1956
Max (ha)

Oct 1984
Max (ha)

Apr 1985
Min (ha)

Oct 1999
Max (ha)

Mar 2000
Min (ha)

Boichiche 23�45 1�04 0�00 203�64 8�65
Goungel 268�30 48�68 0�00 638�05 307�12
Oum Lellé 110�03 61�04 0�00 215�10 54�73
Sawana 176�38 47�64 0�00 834�77 16�42
Tali ∗226�12 100�72 43�71 966�11 685�56

Average 144�54 51�82 8�74 571�53 214�50

∗June 1952.

readings, respectively, but only maximum values are available from the 1952 aerial
photographs.

11.2.2 Results

As expected, the smallest maximum and minimum surface areas of all five wetlands
are measured by the Landsat TM images representing 1984 and 1985 respectively,
years that correspond with a prolonged drought period (see Figure 11.1). Other
than Tali, all have dried up completely by the dry season in April 1985, and even
the maximum areas are far below those recorded by other data in 1956 and 1999
(Table 11.2). In contrast, the 1950s, represented by aerial photographs, is known as
a period of above average rainfall (the 5 year average in 1956 was 402 mm/year).
Although rainfall in Aïoun was lower (331.3 mm), it was still well above the 54 year
average of 235.1 mm (Figure 11.2). This abundant rainfall is reflected in the larger
average sizes (144.54 ha) of the five wetlands, especially in comparison to the 1985
average areas of 51.82 ha. However, the maximum surface areas of the same five
wetlands in 1956 are generally smaller in size than in 1999 (average of 571.53 ha).
This is contrary to annual precipitation averages recorded at Aïoun, which indicated
that rainfall in 1999 (244.3 mm) was lower than in 1956 (331.3 mm). The largest
maximum surface areas of any year were measured using GPS in 1999, surpassing
those of 1956.

Variations in wetland surface areas also take place on a seasonal basis. Typically,
wetlands in the Sahel reach their maximum surface areas by the end of the wet
season, normally November. The volume of water then starts to decrease as water
infiltrates into the substrate to the water table below and through evapo-transpiration,
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which increases rapidly during the dry season. Consumption by humans and live-
stock will account for only minor outputs. Uncommonly, all five sample wetlands
still held water, according to GPS measurements, in March 2000 (the dry season),
and two of these, Goungel and Tali, even retained water until the following wet
season. In contrast, seasonal variability is far more abrupt during the notorious
drought years of the mid-1980s. In line with rainfall data, all of the wetlands were
represented by Landsat TM sensor data as very small during the 1984 wet season;
for example, Boichiche was only 1 ha in surface area. By the time of the wet season
in 1985, all but Tali were measured as completely dry. Graphically, these boundary
changes can be visualized in Figure 11.7. For completeness, the comparisons are
only between the Landsat TM images in 1984–1985 and the GPS readings taken in
1999–2000; and for clarity the wetlands are not comparable in scale to each other.
Generally, the spatial association of the boundaries is very close, giving support to
the methods used to extract the information from each dataset. Shape and logical
consistency (minimum boundaries are contained within maximum boundaries) are
both preserved across space and time. Of the notable differences, there is a more
dramatic decrease in surface area from wet season to dry season in Sawana and
Biochiche, due to the shallow nature of the depressions. The shallowness in Sawana
is further demonstrated by the fragmentation of the wetland after the relatively
dry wet season of 1984. Maximum and minimum water level differences in Tali
are less extreme due to the deeper nature of the wetland depression (on-site visits
documented in Shine, 2002). It was not possible to assess seasonal variations in the
1950s due to the lack of comparable aerial photographs.

Comparisons between drought (1980s) and relatively non-drought (1956 and 1999)
periods indicate a clear relationship between precipitation and wetland size. As a rule,
belowaveragerainfallmeanssmaller surfaceareas,whileaboveaveragerainfall results
in larger surface areas. However, the disproportionately larger sizes of the wetlands
with moderate rainfall of 255 mm in 1999–2000, compared to smaller surface areas in
1956 but with 331 mm of rainfall, needs further explanation. A number of hypotheses
can be put forward to account for this disparity:

1. Errors arising from the use of different sources of data used to calculate
surface areas.

2. Spatial variability in rainfall, resulting in less actual rainfall at the wetlands
compared to recorded rainfall at the weather station at Aïoun.

3. Changes in the topography of the wetland basins over time.

Hypothesis (1) is an unavoidable factor in all multiscale and multitemporal analysis
using remote sensing. Inconsistency in data sources is unavoidable, given the length
of the study period and the isolated location of the study area. However, the effects
of data source inconsistency are tolerable, provided that the scale and scope of
measurement are within the objectives of the application. As alluded to earlier, the
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Figure 11.7 Min–max variations in wetland surface areas of (a) Tali, (b) Sawana, (c) Oum
Lellé, (d) Goungel and (e) Boichiche, using Landsat TM (1984–1985) and GPS (1999–2000)
data

scale of measurement is at a very fine level, the coarsest being from the Landsat
TM sensor data at 30 m, and the scope is a straightforward identification of water
bodies (and biomass associated with water) from highly arid surroundings. If errors
are attributable to source data, they are more likely the result of manual interpre-
tation of wetlands from aerial photographs, NDVI and classification imperfections
from Landsat TM sensor data, and intrinsic positional errors from GPS measure-
ments. However, given the magnitude of the wetland variations, both annually and
seasonally, it seems highly unlikely that errors in source data are anything more
than tangential.

Spatial variability of rainfall, hypothesis (2), may be more of a contributory
impact on wetland size variations with distance from the nearest weather station.
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The nearest weather station in Aïoun is at a distance of 10–140 km from the five
wetlands. An extreme example can be demonstrated by Sawana and Oum Lellé;
two wetlands a mere 7 km apart. Both wetlands filled to capacity in 1999 when the
rainfall recorded in Aïoun was 253 mm. With similar precipitation recorded in the
wet season of 2000, 255 mm. Sawana remained dry while Oum Lellé filled to levels
comparable with 1999/00 (Shine, 2002). Such small-scale geographical differences
may account for some changes but are less likely to account for variations in all
five wetland surface areas across all years.

The third hypothesis seems the most likely explanation of the discrepancies
between rainfall and wetland size. The drought that affected most of the Sahel
in the 1970s, 1980s and nearly all of the 1990s resulted in reduced hydraulic
erosion and the dominance of Aeolian erosion and deposition. Ephemeral wetlands
in the arid zone are constantly changing in topographic shape, due to the interplay
of such erosional and depositional forces (see e.g. Mullié and Brouwer, 1994).
During the dry periods wetlands have been observed to infill, due to Aeolian
deposition (Bouland, 1996). This is usually counterbalanced by the redistribution
of sediment by hydraulic forces during the wet season. However, in the absence of
sufficient rainfall during the wet season, Aeolian deposition continues to dominate
and wetlands continue to infill. Communities in the Sahel frequently report sand
encroachment as a major threat to wetlands (documented in PSB/GTZ, 1999). In
time, sustained infilling tends to change the physical shape of the wetland basins,
resulting in shallower depressions. If this is what happened to the sample wetlands
during the 30 years or so of drought, the return of wetter conditions in 1999 resulted
in a volume of water that filled areas greater than previous wetland depressions.
This was corroborated through interviews with members of the communities living
beside the sample wetlands in 2000, who claimed that the present wetlands are
much larger than they had been in living memory.

The expansion of rain-fed agriculture and the accompanying clearing of land in
the wetland catchments since the 1950s may also have contributed to the infilling of
the wetland depressions. Encroaching agriculture on catchment slopes in the Sahel
is known to increase run-off and sediment accumulation in the wetland depres-
sions, thereby reducing wetland volume (Zimbabwe example in Whitlow, 1983).
The consequence is shallower wetlands with reduced storage capacity (Mullié and
Brouwer, 1994). This may have contributed to the enlargement of wetland surface
areas in 1999–2000, when the wetlands overflowed their traditional depressions,
causing flooding in nearby villages (e.g. Goungel in 1999).

Variability in wetland size and therefore in wetland duration is indisputable. That
precipitation is a factor affecting wetland areas is also incontestable. However, other
factors, such as erosion and deposition, land-use and human disturbance, may also
have important roles to play. Conceptually, southern Mauritania is a non-equilibrium
environment, based on dynamic ecologies (see Botkin, 1990) which, in turn, infer
variability in space and in time. This means that environmental management systems
based on average conditions and aiming to maintain the balance of nature are
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frequently unsuccessful, as they fail to understand the dynamics of non-equilibrium
systems.

11.2.3 Implications for management

In simplest terms, the level to which a wetland fills in a year and the duration
for which it holds water determines that year’s productive capacity. As wetlands
fill, they provide water for livestock and humid soil for flood-recession agriculture.
In addition, wet conditions result in an abundance of wild foods and forestry
products, which provide an increasingly important additional source of income
to local communities. However, excess water can also have a negative effect on
agriculture, as fields can remain flooded well into the growing season, increasing the
risk of harvest failure – a delicate balance, therefore, between too much and too little
water determines the annual productive capacity of the wetlands. Unfortunately,
water levels in arid environments are impossible to predict, as they are dependant
on highly variable rainfall. Instead, a tenuous situation prevails, where precipitation
levels are frequently used at national level to gauge and evaluate annual wetland-
derived resource availability.

Wetland management in the Sahel is traditionally based on the multiple use
of resources by a wide range of consumers (see the Burkina Faso example in
Bognounou et al., 1994). Diversification assures security in the event of drought
and minimizes the impact of human activities on the ecosystem. Unfortunately,
natural resource managers and development project staff fail to understand the
variable nature of these resources and implement strategies based on average or
above-average conditions (e.g. PGRNP and MDRE, 1999). As there is no average
or equilibrium state in dynamic environments, these goals are rarely met. Moreover,
due to rainfall variability, a productive agricultural wetland may only be inundated
for 1 in 3–4 years, with the implication that alternative sources of revenue are
necessary in the intermediary years (e.g. Sawana in 2000–2001 and 2001–2002,
when the wetland remained dry and crops absent). With the contemporary trend
of converting wetlands from multiple-use to single-use systems comes the increase
in economic risk during times of drought. Development agencies tend to base
plans on Western principles, assuming equilibrium systems that are frequently
unrealistic in arid areas (see Scoones, 1995). Mobile animal rearing and diversified
livelihood strategies cope best in unpredictable situations, while arable agriculture
is at the mercy of the rains. Until planners take the variability of resources in the
arid zone into account, their interventions will be of minimal value, regardless of
the vast quantities of capital injected into development schemes (observations in
Shine, 2002).

The flora and fauna living in and using ephemeral wetlands have adapted to the
variable conditions. Plants have resistant seeds and tubers (e.g. Nymphea lotus), and
fish (such as Clarias anguillaris and Protopterus annectens) are equipped with lungs
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or resistant eggs to survive until the next rains. One particular newsworthy example
is the rediscovery of relict populations of the Nile crocodile (Crocodylus niloticus) in
1999 (Nickel, 2001; Shine et al., 2001), 70 years after the last reports of their existence
and 6 years after the IUCN Species Survival Commission listed them as extirpated.
These populations have survived dramatic environmental changes over the last 10 000
years by adapting to increasingly dry and variable conditions as the Sahara turned from
savannah to desert. During the long dry seasons today, the crocodiles shelter in caves
and burrows, waiting for the rains to return, bringing with them the hope of food in
the form of fish, amphibians and small mammals. The isolated populations live on the
brink, relying on the goodwill of the local populations and the sporadic rainfall for
survival. Careful management practices, taking into account their reliance on these
ephemeral ecosystems, are required to assure their future while we learn more about
their distribution and survival tactics. Traditional land-use practices have preserved
their habitats until now and formed a sound basis for future conservation efforts.

In addition, mobile species also make use of the wetlands; they provide staging
posts and overwintering sites for a wide variety of Palaearctic migrants. Water birds
have been counted in internationally important numbers in the ephemeral wetlands
of south-eastern Mauritania, but this is not the case every year. When the wetlands
remain dry, the birds go elsewhere, making it difficult to persuade conservationists and
governments of their important role. Adaptations to the Ramsar Convention (Ramsar
Convention Bureau, 1999) allow irregularly inundated wetlands in the arid zone to
qualify as sites of international importance, based primarily on a minimum of 5 years of
data. Unfortunately, data representing 5 years are generally unavailable in developing
countries, and amendments for arid zone applications for Ramsar status have yet to
be approved. Data from remote sensing, especially satellite sensors, are collected at
frequent intervals, and certainly within the required annual basis. They have a poten-
tially important role in routine monitoring of the presence and absence of wetlands,
which, in turn, would contribute to migratory predictions. Wildlife and biodiversity
managers need to take the unpredictable nature of these environments into account
when drawing up management plans. Small, isolated habitat islands require priority
conservation action, particularly when they host a wealth of biodiversity and/or rare
species (see Pickett and Thompson, 1978; Pickett et al., 1992).

11.3 Conclusions

Quality in strategies used for the management and development of ephemeral
wetlands in the Sahel is critical for harmonizing ecological habitats with human
necessity and economic sustainability. Without routine monitoring, the inherently
variable nature of these arid zone wetlands makes this relationship even more
crucial. The lack of information on the distribution and the severity of wetland vari-
ability in non-equilibrium systems inevitably leads to inappropriate and haphazard
management schemes that are unavoidably associated with negative economic and
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environmental impacts. In response, this paper has explored the potential of adopting
remote sensing for constructing methodologies that measure and compare the vari-
ability of wetland areas both seasonally and annually. Data from aerial photography,
satellite imagery and GPS were used to delineate the minimum and maximum
surface areas of a sample of ephemeral wetlands in southern Mauritania over a 44
year period. The delineation of arid zone ephemeral wetlands from remote sensor
data is a matter of identifying distinctive combinations of water and vegetation from
the surrounding permanent and almost barren landscape. The contrast is striking
enough to produce highly accurate demarcations of wetland areas by photographic
interpretation and unions of NDVI and water classification from satellite imagery.
However, while the combination of remotely sensed data provide a comprehensive,
multitemporal and relatively low-cost method of creating inventories of wetland
resources in isolated areas, information on wetland characteristics and use is highly
limited. Further information from field visits using GPS is necessary to not only
provide a more detailed description of wetland profiles but also to aid the geo-
registration and verification of the remotely sensed data.

Results suggest that the degree of annual and seasonal variability closely mirrors
precipitation patterns. On the whole, larger wetland areas and narrower seasonal
variability are measured by remote sensing and GPS during wetter years, whilst
smaller areas and wider seasonal variability are represented during drier years.
Some of the exceptions to this palpable rule are the result of data inconsistency
and misinterpretation, as well as errors of rainfall interpolation between the sparse
distribution of available weather stations. However, the most likely factor for devi-
ations between wetland size and precipitation is basin shape. Increased Aeolian
deposition due to the prolonged drought of the 1970s, 1980s and 1990s is the most
likely cause of changes in basin shape in the Sahel. This, in time, has contributed to
larger wetland surface areas in 1999 than in the 1950s, despite higher rainfall in the
latter. It is anticipated that further work will focus on the use of digital elevation
models, not only to measure basin shape and size but also to contribute to water
depth calculations.

Ephemeral wetlands in the Sahel are by definition fleeting and highly variable. As
such, associated potential agricultural productive capacity is so unpredictable that
a harvest is rarely guaranteed. Historically, techniques centred on the multiple use
of resources have been more resilient to wetland variability. Unfortunately, modern
methods are more likely to be single-use, target-driven development schemes that
assume optimal conditions. Such management plans, focused on one-off baseline
studies or average conditions, are at best underproductive and at worst destructive
when applied to dynamic ecosystems. Instead, development schemes and land-
use or conservation planning should embrace the variability of ephemeral wetland
resources and bear in mind that traditional multiple-use management systems
have successfully sustained livelihoods and maintained biodiversity for centuries.
Indigenous technical knowledge that draws on years of experience in managing
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non-equilibrium environments can form a sound basis for today’s management of
arid-zone ephemeral wetlands.

This chapter highlights the uniqueness and variability of ephemeral wetlands in
the Sahel. It advocates a strong role for the implementation of remote sensing and
GPS in long-term strategies that seek to survey their unpredictability as a precursor
for balancing their ecological habitats with economic development. The monitoring
of inland, arid-zone ephemeral wetlands in the developing world represents a unique
application of remote sensing and a stark contrast to the majority of studies on far
more permanent, temperate, coastal wetlands in the developed world. Unfortunately,
the lack of research and inherent physical discontinuity has inevitably prevented
the establishment of consistent ephemeral wetland taxonomies that are essential
for long-term comparisons. Nevertheless, this chapter demonstrates how a mixture
of data from various remote sensing sources can at least be used to measure
broad wetland/non-wetland dichotomies whenever such data are available. Sporadic
surveillance may not be ideal, but it does provide a basis for the establishment of
benchmarks. Space-borne data, in particular, represent a source of routine regional
scale surveillance at reasonable cost, which when compared across time can aid
the consistent and accurate monitoring of the variability of arid zone ephemeral
wetlands.
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